DOI QR코드

DOI QR Code

On the laboratory investigations into the one-dimensional compression behaviour of iron tailings

  • Ismail A. Okewale (Department of Mining Engineering, University of Johannesburg) ;
  • Matthew R. Coop (Department of Civil Engineering, University College London) ;
  • Christoffel H. Grobler (Department of Mining Engineering, University of Johannesburg)
  • Received : 2022.07.27
  • Accepted : 2023.11.06
  • Published : 2023.11.25

Abstract

The failures of tailing dams have caused irreparable damage to human lives, assets and environment and this has ultimately resulted in great economic, social and environmental challenges worldwide. Due to this, investigation into mechanical behaviour of tailings has received some attention. However, the knowledge and understanding of mechanics of behaviour in iron tailings is still limited. This study investigates the mechanics of iron tailings from Nigeria considering grading, effects of fabric resulting from different sample preparations and the possibility of non-convergent behaviour. This was achieved by conducting series of one-dimensional compression tests in conjunction with index, microstructural, chemical and mineralogical tests. The materials are predominantly poorly graded, non-clayey and non-plastic. The tailings are characterised by angular particles with no obvious particle aggregations and dominated by silicon, iron, aluminium, haematite and quartz. The compression paths do not converge and unique normal compression lines are not found and this is an important feature of the transitional mode of behaviour. The behaviour of these iron tailings therefore depends on initial specific volume. The preparation methods also have effect on the compression paths of the samples. The gradings of the samples have an influence on the degree of transitional behaviour but the preparation methods do affect the degree of convergence. The transitional mode of behaviour in these iron tailings investigated is very strong.

Keywords

Acknowledgement

The authors would like to thank National Research Foundation (NRF) of South Africa for the award of fellowship which led to this paper. The authors would like to appreciate Ajayi M., Adeniran V., Olaiya T.D., Obabiyi K.Y., Yusuf A.A.., Saka M.S. and Gbogi A.S. for their assistance in the laboratory in the course of conducting this research.

References

  1. Al-Tarhouni, M., Simms, P. and Sivathayalan, S. (2011), "Cyclic behaviour of reconstituted and desiccated-rewet thickened gold tailings in simple shear", Can. Geotech. J., 48(7), 1044-1060. https://doi.org/10.1139/t11-022. 
  2. Bedin, J., Schnaid, F., da Fonseca, A.V. and Costa Filho, L.D.M. (2012), "Gold tailings liquefaction under critical state soil mechanics", Geotechnique, 62(3), 263-267. https://doi.org/10.1680/geot.10.P.037. 
  3. Carrera, A., Coop, M. and Lancellotta, R. (2011), "Influence of grading on the mechanical behaviour of Stava tailings", Geotechnique, 61(11), 935-946. https://doi.org/10.1680/geot.9.P.009. 
  4. Chang, N., Heymann, G. and Clayton, C. (2011), "The effect of fabric on the behaviour of gold tailings", Geotechnique, 61(3), 187-197. https://doi.org/10.1680/geot.9.P.066. 
  5. Cola, S. and Simonini, P. (2002), "Mechanical behavior of silty soils of the Venice lagoon as a function of their grading characteristics", Can. Geotech. J., 39(4), 879-893. https://doi.org/10.1139/t02-037. 
  6. Coop, M.R. (2015), "Limitations of a critical state framework Applied to the behaviour of natural and "Transitional" soils", Proceedings of the 6th Intl Symp. on Deformation Characteristics of Geomaterials, Buenos Aires. 
  7. Fourie, A.B., Blight, G.E. and Papageorgiou, G. (2001), "Static liquefaction as a possible explanation for the Merriespruit tailings dam failure", Can. Geotech. J., 38(4), 707-719.  https://doi.org/10.1139/t00-112
  8. Fourie, A.B. and Papageorgiou, G. (2001), "Defining an appropriate steady state line for Merriespruit gold tailings", Can. Geotech. J., 38(4), 695-706. https://doi.org/10.1139/t00-111. 
  9. Hyodo, M., Wu, Y., Kajiyama, S., Nakata, Y. and Yoshimoto, N. (2017), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 127-138. https://doi.org/10.12989/gae.2017.12.1.127. 
  10. Lade, P.V., Yamamuro, J.A. and Liggio, C.D. (2009), "Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand", Geomech. Eng., 1(1), 1-15. https://doi.org/10.12989/gae.2009.1.1.001. 
  11. Li, W. (2017), "The mechanical behaviour of tailings", City University of Hong Kong (PhD Thesis). 
  12. Li, W., Coop, M.R., Senetakis K. and Schnaid, F. (2018), "The mechanics of a silt-sized gold tailing", Eng. Geol., 241, 97-108. https://doi.org/10.1016/j.enggeo.2018.05.014
  13. Li, W. and Coop, M.R. (2019), "Mechanical behaviour of Panzhihua iron tailings", Can. Geotech. J., 1-16. https://doi.org/10.1139/cgj-2018-0032. 
  14. Martins, F., Bressani, L.A., Coop, M.R. and Bica, V.D. (2001), "Some aspects of the compressibility behaviour of a clayey sand", Can. Geotech. J., 38(6), 1177-1186. https://doi.org/10.1139/t01-048. 
  15. Okewale, I.A. and Coop, M.R. (2017), "A study of the effects of weathering on soils derived from decomposed volcanic rocks", Eng. Geol., 222, 53-71. https://doi.org/10.1016/j.enggeo.2017.03.014. 
  16. Okewale, I.A. (2019), "Influence of fines on the compression behaviour of decomposed volcanic rocks", Int. J. Geo-Eng., 10(4), 1-17. https://doi.org/10.1186/s40703-019-0101-y. 
  17. Okewale, I.A. (2020), "Compressibility and the effects of structure of tropical clay in incremental loading oedometer tests", Geotech. Geol. Eng., 79(38), 5355-5371. https://doi.org/10.1007/s10706-020-01369-4. 
  18. Okewale, I.A. and Coop, M.R. (2020), "A study of completely decomposed volcanic rocks with transitional mode of behaviour", Bull. Eng. Geol. Environ., 79, 4035-4050. https://doi.org/10.1007/s10064-020-01820-z. 
  19. Okewale, I.A. and Grobler, H. (2020a), "The effects of structure of Nigeria clay in one-dimensional compression", Proceedings of the 2020 World Congress on Advances in Civil, Environmental, & Materials Research (ACEM20), 25-28, August, 2020, GECE, Seoul, Korea. 
  20. Okewale, I.A. and Grobler, H. (2020b), "Mechanics of compression behaviour in shale", Proceedings of the 2020 World Congress on Advances in Civil, Environmental, & Materials Research (ACEM20), 25-28, August, 2020, GECE, Seoul, Korea. 
  21. Okewale, I.A. and Grobler, H. (2021a), "Mechanics of compression in talc considering sample quality", Arabian J. Geosci., 1-13. https://doi.org/10.1007/s12517-021-06836-7. 
  22. Okewale, I.A. and Grobler, H. (2021b), "Inherent complexibilities in weathered rocks: A case of volcanic rocks", Rock Mech. Rock Eng., 1-22. https://doi.org/10.1007/s00603-021-02569-x. 
  23. Okewale, I.A. and Grobler, H. (2022a), "Influence of fabrics on compression mechanics of iron tailings", Proceedings of the International Conference Series on Geotechnics, Civil Engineering and Structures (CIGOS 2021), Lecture Notes in Civil Engineering 203, 1113-1120. 
  24. Okewale, I.A. and Grobler, H. (2022b), "Investigations into grading characteristics of tailings", Proceedings of the International Conference Series on Geotechnics, Civil Engineering and Structures (CIGOS 2021), Lecture Notes in Civil Engineering 203, 1113-1120. 
  25. Okewale, I.A. and Grobler, H. (2022c), "Mechanical and microstructural properties of iron tailings", Environ. Geotech., 1-12. https://doi.org/10.1680/jenge.22.0%200%20010. 
  26. Okewale, I.A. and Grobler, H. (2023a), "Mechanics of compression in the reconstituted and intact shale with a transitional mode of behaviour", Geosyst. Geoenviron., 2, 100122. https://doi.org/10.1016/j.geogeo.2022.100122. 
  27. Okewale, I.A. and Grobler, H. (2023b), "Assessment of heavy metals in tailings and their implications on human health", Geosyst. Geoenviron., 2:100203. https://doi.org/10.1016/j.geogeo.2023.100203. 
  28. Okewale, I.A., Olamijulo, O.E. and Olaleye, B.M. (2023), "Investigation into the mechanical behaviour of silica rich bituminous sand0", Geotech. Geol. Eng., 1-16. https://doi.org/10.1007/s10706-023-02462-0. 
  29. Ponzoni, E., Nocilla, A., Coop, M.R. and Colleselli, F. (2014), "Identification and quantification of transitional modes of behaviour in the Sediments of Venice Lagoon", Geotechnique, 64(9), 694-708. https://doi.org/10.1680/geot.13.P.166. 
  30. Reid, D., Fanni, R., Koh, K. and Orea, I. (2018), "Characterisation of a subaqueously deposited silt iron ore tailings", Geotech. Lett,, 8(4), 278-283. https://doi.org/10.1680/jgele.18.00105. 
  31. Reid, D., Fourie, A. and Moggach, S. (2019), "Characterization of a gold tailings with hypersaline pore fluid", Can. Geotech. J., 57(4), 482-496. https://doi.org/10.1139/cgj-2018-0579. 
  32. Reid, D., Fourie, A., Ayala, A.L., Dickinson, S., Ochoa-Cornejo, F., Fanni, R., Garfias, J., Viana Da Fonseca, A., Ghafghazi, A., Ovalle, C., Riemer, M., Rismanchian, A., Olivera, R. and Suazo, J. (2020), "Results of a critical state line testing round robin programme", Geotechnique, 1-15. https://doi.org/10.1680/jgeot.19.P.373. 
  33. Rocchi, I., Coop, M.R. and Maccarini, M. (2017), "The effects of weathering on the physical and mechanical properties of igneous and metamorphic saprolites", Eng. Geol., 231, 56-67. https://doi.org/10.1016/j.enggeo.2017.10.003. 
  34. Rocchi, I. and Coop, M.R. (2014), "Experimental accuracy of the initial specific volume", Geotech. Test. J., 37(1), 169-175. https://doi.org/10.1520/GTJ20130047. 
  35. Schnaid, F., Bedin, J., Viana da Fonseca, A.J.P. and de Moura Costa Filho, L. (2013), "Stiffness and strength governing the static liquefaction of tailings", J. Geotech. Geoenviron., 139(12), 2136-2144. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000924. 
  36. Shipton, B. and Coop, M.R. (2012), "On the compression behaviour of reconstituted soils", Soils Found., 52(4), 668-681. https://doi.org/10.1016/j.sandf.2012.07.008. 
  37. Todisco, M.C., Coop, M.R. and Perreira, J.M. (2018), "Fabric Characterisation in transitional soils", Granular Matter., 20(20), 1-12. https://doi.org/10.1007/s10035-018-0786-1. 
  38. Xu, L. and Coop, M.R. (2016), "The mechanics of a saturated silty loess with a transitional mode", Geotechnique, 1-16. https://doi.org/10.1680/jgeot.16.P.128. 
  39. Xu, M., Song, E. and Cao, G. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2), 169-178. https://doi.org/10.12989/gae.2009.1.2.169. 
  40. Zandarin, M.T., Oldecop, L.A., Rodriguez, R. and Zabala, F. (2009), "The role of capillary water in the stability of tailing dams", Eng. Geol., 105(1-2), 108-118. https://doi.org/10.1016/j.enggeo.2008.12.003. 
  41. Zhang, Q., Yin, G., Wei, Z., Fan, X., Wang, W. and Nie, W. (2015), "An experimental study of the mechanical features of layered structures in dam tailings from macroscopic and microscopic points of view", Eng. Geol., 195, 142-154. https://doi.org/10.1016/j.enggeo.2015.05.031.