DOI QR코드

DOI QR Code

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li (Institute of Geotechnical Engineering, Southeast University) ;
  • Songyu Liu (Institute of Geotechnical Engineering, Southeast University) ;
  • Cuiwei Fu (China Railway First Survey and Design Institute Group Co., Ltd.)
  • Received : 2022.07.29
  • Accepted : 2023.11.01
  • Published : 2023.11.25

Abstract

To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.

Keywords

Acknowledgement

The research was financially supported by the National Natural Science Foundation of China (Grant No. 41972269), and the Jiangsu Provincial Transportation Engineering Construction Bureau (CX-2019GC02).

References

  1. Barron, R.A. (1948), "Consolidation of fine-grained soils by drain wells", Transactions of the American Society of Civil Engineers, 113(1), 718-754. https://doi.org/10.1061/TACEAT.0006098.
  2. Chai, J.C. and Miura, N. (1999), "Investigation of factors affecting vertical drain behavior", J. Geotech. Geoenviron. Eng., 125(3), 216-226. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(216).
  3. Chai, J.C., Horpibulsuk, S., Shen, S. and Carter, J.P. (2014), "Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains", Geotext. Geomembranes, 42(1), 437-444. https://doi.org/10.1016/j.geotexmem.2014.07.001.
  4. Conte, E. and Troncone, A. (2006), "One-dimensional consolidation under general time-dependent loading", Can. Geotech. J., 43(11), 1107-1116. https://doi.org/10.1139/t06-064.
  5. Feng, J., Ni, P. and Mei, G. (2019), "One-dimensional self-weight consolidation with continuous drainage boundary conditions: Solution and application to clay-drain reclamation", Int. J. Numer. Anal. Method. Geomech., 43(8), 1634-1652. https://doi.org/10.1002/nag.2928.
  6. Feng, J., Ni, P., Chen, Z., Mei, G. and Xu, M. (2020), "Positioning design of horizontal drain in sandwiched clay-drain systems for land reclamation", Comput. Geotech., 127, 103777. https://doi.org/10.1016/j.compgeo.2020.103777.
  7. Feng, S., Wang, W., Chen, Z. and Chen, H. (2021), "Analytical solution to consolidation of accreting soil considering step load and horizontal drainage layers", Mar. Georesour. Geotech., 39(8), 889-905. https://doi.org/10.1080/1064119X.2020.1776802.
  8. Gibson, R.E. and Shefford, G.C. (1968), "The efficiency of horizontal drainage layers for accelerating consolidation of clay embankments", Geotechnique, 18(3), 327-335. https://doi.org/10.1680/geot.1968.18.3.327.
  9. Gray, H. (1945), "Simultaneous consolidation of contiguous layers of unlike compressible soils", Transactions of the American Society of Civil Engineers, 110, 1327-1356.
  10. Indraratna, B., Rujikiatkamjorn, C., Balasubramaniam, A.S. and McIntosh, G. (2012), "Soft ground improvement via vertical drains and vacuum assisted preloading", Geotext. Geomembranes, 30: 16-23. https://doi.org/10.1016/j.geotexmem.2011.01.004.
  11. Jang, W.Y. and Mimura, M. (2005), "Effect of permeability and compressibility of sandwiched gravelly sand layers on subsequent settlement of Pleistocene deposits", Soils Found., 45(6), 111-119. https://doi.org/10.3208/sandf.45.111.
  12. Lee, M.S. and Oda, K. (2015), "Evaluation of excess pore water pressure characteristics in sand mat used for recycling dredged soil", Mar. Georesour. Geotech., 33(5), 367-375. https://doi.org/10.1080/1064119X.2014.890985.
  13. Lee, S.L., Karunaratne, G.P., Yong, K.Y. and Ganeshan, V. (1987), "Layered Clay-Sand Scheme of Land Reclamation", J. Geotech. Eng., 113(9), 984-995. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(984).
  14. Lei G., Li, Z. and Xu, L. (2016), "Free-strain solutions for two-dimensional consolidation with sand blankets", Chinese J. Geotech. Eng., 38(2), 193-201. (in Chinese).
  15. Lei, G., Fu, C. and Ng, C.W.W. (2016), "Vertical-drain consolidation using stone columns: An analytical solution with an impeded drainage boundary under multi-ramp loading", Geotext. Geomembranes, 44(1), 122-131. https://doi.org/10.1016/j.geotexmem.2015.07.003.
  16. Lei, G., Zheng, Q., Ng, C.W.W., Chiu, A.C.F. and Xu, B. (2015), "An analytical solution for consolidation with vertical drains under multi-ramp loading", Geotechnique, 65(7), 531-547. https://doi.org/10.1680/geot.13.P.196.
  17. Li, Z., Lei, G. and Fu, C. (2016), "Free-strain solutions for two-dimensional consolidation with a sand-wall drain", Rock Soil Mech., 37(6), 1613-1622. (in Chinese).
  18. Liu, J., Lei, G. and Zheng, M. (2014), "General solutions for consolidation of multilayered soil with a vertical drain system", Geotext. Geomembranes, 42(3), 267-276. https://doi.org/10.1016/j.geotexmem.2014.04.001.
  19. Lu, M., Xie, K. and Wang, S. (2011), "Consolidation of vertical drain with depth-varying stress induced by multi-stage loading", Comput. Geotech., 38(8), 1096-1101. https://doi.org/10.1016/j.compgeo.2011.06.007.
  20. Mesri, G. (1973), "One-dimensional consolidation of a clay layer with impeded drainage boundaries", Water Resour. Res., 9(4): 1090-1093. https://doi.org/10.1029/WR009i004p01090.
  21. Mesri, G. and Funk, J.R. (2015), "Settlement of the Kansai International Airport Islands", J. Geotech. Geoenviron. Eng., 141(2), 04014102. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001224.
  22. Mimura, M. and Jang, W.Y. (2004), "Description of time-dependent behavior of quasi-overconsolidated Osaka Pleistocene clays using elasto-viscoplastic finite element analyses", Soils Found., 44, 41-52. https://doi.org/10.3208/sandf.44.4_41.
  23. Mimura, M. and Jang, W.Y. (2005), "Verification of the elastoviscoplastic approach assessing the long-term deformation of the quasi-overconsolidated pleistocene clay deposits", Soils Found., 45(1), 37-49. https://doi.org/10.3208/sandf.45.1_37.
  24. Mimura, M., Takeda, K., Yamamoto, K., Fujiwara, T. and Jang, W.Y. (2003), "Long-term settlement of the reclaimed quasi-over-consolidated Pleistocene clay deposits in Osaka Bay", Soils Found., 43(6), 141-153. https://doi.org/10.3208/sandf.43.6_141.
  25. Ni, P., Mei, G. and Zhao, Y. (2019), "Surcharge preloading consolidation of reclaimed land with distributed sand caps", Mar. Georesour. Geotec., 37(6), 671-682. https://doi.org/10.1080/1064119X.2018.1482389.
  26. Nogami, T. and Li, M. (2002), "Consolidation of system of clay and thin sand layers", Soils Found., 42(4), 1-11. https://doi.org/10.3208/sandf.42.4_1.
  27. Nogami, T. and Li, M. (2003), "Consolidation of clay with a system of vertical and horizontal drains", J. Geotech. Geoenviron. Eng., 129(9), 838-848. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:9(838).
  28. Tan, S.A., Liang, K.M., Yong, K.Y. and Lee, S.L. (1992), "Drainage efficiency of sand layer in layered clay-sand reclamation", J. Geotech. Eng., 118(2), 209-228. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:2(209).
  29. Tian, Y., Wu, W., Jiang, G., El Naggar, M.H., Mei, G., Xu, M. and Liang, R. (2020), "One-dimensional consolidation of soil under multistage load based on continuous drainage boundary", Int. J. Numer. Anal. Method. Geomech., 44(8), 1170-1183. https://doi.org/10.1002/nag.3055.
  30. Yao, R., Ni, P., Mei, G. and Zhao, Y. (2019), "Numerical analysis of surcharge preloading consolidation of layered soils via distributed sand blankets", Mar. Georesour. Geotec., 37(8), 902-914. https://doi.org/10.1080/1064119X.2018.1506529.
  31. Zhu, G. and Yin, J.H. (2004), "Consolidation analysis of soil with vertical and horizontal drainage under ramp loading considering smear effects", Geotext. Geomembranes, 22(1-2), 63-74. https://doi.org/10.1016/S0266-1144(03)00052-9.