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C∗-ALGEBRA-VALUED EXTENDED QUASI b-METRIC SPACES
AND FIXED POINT THEOREMS WITH AN APPLICATION

Qusuay H. Alqifiary a and Jung Rye Lee b, ∗

Abstract. In this paper, we introduce the concept of C∗-algebra-valued quasi b-
metric space and prove some existence and uniqueness theorems. Furthermore, we
prove the Hyers-Ulam stability results for fixed point problems via C∗-algebra-valued
extended quasi b-metric space.

1. Introduction and Preliminaries

In 2014, Ma et al. [8] introduced the concept of C∗-algebra-valued metric spaces
by replacing the range of real numbers with an unital C∗-algebra-valued metric
space. In 2015, Ma et al. [7] introduced a generalized C∗-algebra-valued metric
space. For more information about C∗-algebra, see [4]. Many researchers have
obtained fixed point theorems in C∗-algebra-valued metric spaces (see [2, 6, 10, 14]).
Samet et al. [13] introduced α-Ψ-contractive mappings in metric spaces and then
developed in b-metric spaces [12]. Many authors have introduced several results
related to α-admissible and α-Ψ-contractive mappings [3, 5, 9].

In this paper, we present the notion of an extended quasi-b-metric space in C∗-
algebra and obtain some new results associated with the fixed point theorem and
application to the Hyers-Ulam stability.

Suppose that Ω is a unital C∗-algebra with a unit 1Ω, a partial ordering ¹ on Ω
as a ¹ b if b − a º 0Ω, where 0Ω means the zero element in Ω and Ω+ = {x ∈ Ω :
x º 0Ω}.

Definition 1.1 ([8]). Let X be a nonempty set. A mapping q : X×X → Ω is called
a C∗-algebra-valued metric on X if it satisfies the following: For all a, b, c ∈ X,
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(1) q(a, b) º 0Ω and q(a, b) = 0Ω if and only if a = b;
(2) q(a, b) = q(b, a) ;
(3) q(a, b) ¹ [q(a, c) + q(c, b)].

Then the triplet (X, Ω, q) is said to be a C∗-algebra-valued metric space.

In 2015, Ma et al. [11] introduced the notion of C∗-algebra-valued b-metric space.

Definition 1.2 ([11]). Let X be a nonempty set. A mapping q : X×X → Ω is called
a C∗-algebra-valued b-metric on X if it satisfies the following: For all a, b, c ∈ X,

(1) q(a, b) º 0Ω and q(a, b) = 0Ω if and only if a = b;
(2) q(a, b) = q(b, a);
(3) q(a, b) ¹ s[q(a, c) + q(c, b)].

Then the triplet (X, Ω, q) is said to be a C∗-algebra-valued b-metric space.

In 2020, Asim and Imdad [1] introduced the following definition of C∗-algebra-
valued extended b-metric space.

Definition 1.3. Let X be a nonempty set and µ : X ×X → Ω+ be a mapping. A
mapping Lµ : X ×X → Ω is called a C∗-algebra-valued extended b-metric on X if it
satisfies the following: For all a, b, c ∈ X,

(1) Lµ(a, b) º 0Ω and Lµ(a, b) = 0Ω if and only if a = b;
(2) Lµ(a, b) = Lµ(b, a) ;
(3) Lµ(a, b) ¹ µ(a, b)[Lµ(a, c) + Lµ(c, b)].

Then the triplet (X, Ω, Lµ) is said to be a C∗-algebra-valued extended b-metric space.

In this paper, we introduce another type of generalized C∗-algebra-valued metric
space, which is called a C∗-algebra-valued extended quasi b-metric space (in short,
C∗-avEqbms) as follows:

Definition 1.4. Let X be a nonempty set and µ : X ×X → Ω+ be a mapping. A
mapping Lµ : X ×X → Ω is a C∗ -avEqbm on X if it satisfies the following: For all
a, b, c ∈ X,

(1) Lµ(a, b) º 0Ω and Lµ(a, b) = 0Ω if and only if a = b;
(2) Lµ(a, b) ¹ µ(a, b)[Lµ(a, c) + Lµ(c, b)].

Then the triplet (X, Ω, Lµ) is said to be a C∗-algebra-valued extended quasi b-metric
space.
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Remark 1.5. Observe that if µ(a, b) = s º 1Ω, then (X, Ω, Lµ) is a C∗-algebra-
valued extended quasi b-metric space.

Definition 1.6. Let (X, Ω, Lµ) be a C∗-avEqbms. A sequence {yi} in X is said to
be

(i) convergent if for all c ∈ Ω with C º 0Ω, there exists a natural number
N = N(c) such that Lµ(y, yn) ¹ c and Lµ(yn, y) ¹ c for all n > N ;

(ii) a left Cauchy sequence if for all c ∈ Ω with C º 0Ω, there exists a natural
number N = N(c) such that Lµ(yn, ym) ¹ c for all n ≥ m ≥ N ;

(iii) a right Cauchy sequence if for all c ∈ Ω with C º 0Ω, there exists a natural
number N = N(c) such that Lµ(ym, yn) ¹ c for all n ≥ m ≥ N ;

(iv) a Cauchy sequence if for all c ∈ Ω with C º 0Ω, there exists a natural
number N = N(c) such that Lµ(ym, yn) ¹ c for all n, m ≥ N .

Remark 1.7. We say that a C∗-avEqbms (X, Ω, Lµ) is a complete C∗-algebra-
valued extended quasi b-metric space if every Cauchy sequence is convergent with
respect to Ω.

Definition 1.8. Let X 6= ∅ and αΩ : X × X −→ (Ω
′
)+ be a mapping. A self

mapping T : X → X is called αΩ-admissible if for every (a, b) ∈ X ×X such that
αΩ(a, b) º 1Ω, αΩ(Ta, Tb) º 1Ω.

Definition 1.9. Let (X,Ω, Lµ) be a complete C∗-avEqbms. A mapping T : X → X

is said to have a generalized Lipschitz condition if there exists b ∈ Ω such that ‖b‖ < 1
and LΩ(Tx, Ty) ¹ b∗LΩ(x, y)b for all x, y ∈ X.

Lemma 1.10. Let (X, Ω, Lµ) be a C∗- avEqbms. If Lµ is continuous, then every
convergent sequence has a unique limit.

2. Main Results

Theorem 2.1. Let (X, Ω, ÃLµ) be a complete C∗-avEqbms with µ : X × X → Ω+.
Suppose that a mapping T : X −→ X satisfies the following:

(i) T is a generalized Lipschitz contraction;
(ii) T is continuous.

Then T has a unique fixed point.
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Proof. Let y0 ∈ X and define a sequence {yn} in X such that yn = T (yn−1) for all
n. If yn = yn+1 for some n, then yn is a fixed point for T . Assume that yn 6= yn+1

for all n. Since T is a generalized Lipschitz contraction, we have

ÃLµ(yn, yn+1) = ÃLµ(Tyn−1, T yn) ¹ b∗ ÃLµ(yn−1, yn)b

¹ (b∗)2 ÃLµ(yn−2, yn−1)b2

...

¹ (b∗)n ÃLµ(y0, y1)bn

¹ (b∗)nΥbn,

where Υ = ÃLµ(y0, y1).
Now, we will show that {yn} is a Cauchy sequence. For n,m ∈ N such that

n < m, we have

ÃLµ(yn, ym) ¹ µ(yn, ym)[ÃLµ(yn, yn+1) + ÃLµ(yn+1, ym)]

¹ µ(yn, ym)ÃLµ(yn, yn+1) + µ(yn, ym)µ(yn+1, ym)ÃLµ(yn+1, yn+2)

+ · · ·+ µ(yn, ym)µ(yn+1, ym) · · ·µ(ym−2, ym)µ(ym−1, ym)ÃLµ(ym−1, ym)

¹ µ(yn, ym)(b∗)nΥ(b)n + µ(yn, ym)µ(yn+1, ym)(b∗)n+1Υ(b)n+1

+ · · ·+ µ(yn, ym)µ(yn+1, ym) · · ·µ(ym−2, ym)µ(ym−1, ym)(b∗)m−1Υ(b)m−1

= µ(yn, ym)(b∗)nΥ
1
2 Υ

1
2 (b)n + µ(yn, ym)µ(yn+1, ym)(b∗)n+1Υ

1
2 Υ

1
2 (b)n+1

+ · · ·+ µ(yn, ym)µ(yn+1, ym) · · ·µ(ym−2, ym)µ(ym−1, ym)(b∗)m−1Υ
1
2 Υ

1
2 (b)m−1

= µ(yn, ym)(Υ
1
2 bn)∗(Υ

1
2 (b)n) + µ(yn, ym)µ(yn+1, ym)(Υ

1
2 bn+1)∗(Υ

1
2 (b)n+1)

+ · · ·+ µ(yn, ym)µ(yn+1, ym) · · ·µ(ym−2, ym)µ(ym−1, ym)(Υ
1
2 bm−1)∗(Υ

1
2 (b)m−1)

= µ(yn, ym)|Υ 1
2 bn|2 + µ(yn, ym)µ(yn+1, ym)|Υ 1

2 bn+1|2

+ · · ·+ µ(yn, ym)µ(yn+1, ym) · · ·µ(ym−2, ym)µ(ym−1, ym)|Υ 1
2 bm−1|2

=
m−1∑

j=0

|Υ 1
2 bn+j |2

j∏

k=0

µ(yn+k, ym) ¹‖
m−1∑

j=0

|Υ 1
2 bn+j |2 ‖

j∏

k=0

µ(yn+k, ym)

¹
m−1∑

j=0

‖ Υ
1
2 ‖‖ bn+j ‖2

j∏

k=0

µ(yn+k, ym) ¹‖ Υ
1
2 ‖

m−1∑

j=0

‖ bn+j ‖2
j∏

k=0

µ(yn+k, ym)

¹‖ Υ
1
2 ‖

m−1∑

j=0

‖ bj ‖2
j∏

k=0

µ(yk, ym).
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By the ratio test, we have

lim
j→∞

‖ bj+1 ‖2
∏j+1

k=0 µ(yk, ym)

‖ bj ‖2
∏j

k=0 µ(yk, ym)
¹ lim

j→∞
µ(yk, ym) ‖ b ‖2≺ 1Ω.

Now, for all m ≥ 1, we have

Sn =
n∑

j=0

‖ bj ‖2
j∏

k=0

µ(yk, ym)

and

S =
∞∑

j=0

‖ bj ‖2
j∏

k=0

µ(yk, ym).

Thus we obtain

ÃLµ(yn, ym) ¹‖ Υ ‖‖ b2n ‖ [Sn−1 − Sn].

So the sequence {yn} is a left Cauchy sequence in Ω. Similarly, we prove that the
sequence {yn} is a right Cauchy sequence in Ω. Hence it is a Cauchy sequence. Since
Ω is complete, there exists y ∈ Ω such that

lim
n→∞ ÃLµ(yn, y) = lim

n→∞ ÃLµ(y, yn) = 0Ω.

Now, we will show that y is a fixed point of T . For every n ∈ N, we have

ÃLµ(Ty, y) ¹ µ(Ty, y)[ÃLµ(Ty, yn+1) + ÃLµ(yn+1, y)]

= µ(Ty, y)[ÃLµ(Ty, Tyn) + ÃLµ(yn+1, y)]

¹ µ(Ty, y)[b∗ ÃLµ(y, yn)b + ÃLµ(yn+1, y)]

→ 0Ω

as n →∞.
Therefore, y is a fixed point of T .
For the uniqueness, suppose that a, b ∈ X such that Ta = a and Tb = b. Then

we have

ÃLµ(a, b) = ÃLµ(Ta, Tb) ¹ b∗ ÃLµ(a, b)b

and so

‖ ÃLµ(a, b) ‖ ¹‖ b∗ ‖‖ ÃLµ(a, b) ‖‖ b ‖
=‖ b ‖2‖ ÃLµ(a, b) ‖
<‖ ÃLµ(a, b) ‖ .

This is a contradiction. Hence a = b. That is. T has a unique fixed point . ¤
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Definition 2.2. Suppose that A and B are unital C∗-algebras with units 1A and
1B, respectively. We say that a mapping Γ : A → B is C∗-algebra homomorphism if
for all a1, a2 ∈ C and ζ, ξ ∈ A,

(i) Γ(a1ζ + a2ξ) = a1Γ(ζ) + a2Γ(ξ);
(ii) Γ(ζξ) = Γ(ζ)Γ(ξ);
(iii) Γ(ζ∗) = Γ(ζ)∗;
(iv) Γ(1A) = 1B .

Definition 2.3. Let ΨΩ be the set of positive functions ΓΩ : Ω+ → Ω+, which
satisfy the following:

(i) ΓΩ is continuous and nondecreasing;
(ii) ΓΩ(a) = 0Ω if and only if a = 0Ω;
(iii)

∑∞
n=1 Γn

Ω(a) < ∞, lim
n→∞Γn

Ω(a) for each a º 0A;

(iv) the series
∑∞

k=0 bkΓk
Ω(a) < ∞ for a º 0A.

Remark 2.4. We can conclude the following:
(1) Every C∗-algebra homomorphism is contractive and hence bounded.
(2) Every C∗-algebra homomorphism is positive.

Definition 2.5. Let (X, Ω, ÃLµ) be a C∗-algebra-valued Eqbms and T : X → X be
a mapping. Then we say that T is a α-ΓΩ-contractive mapping if there exist two
functions α : X ×X → Ω+ and ΓΩ ∈ ΨΩ such that

α(a, b)ÃLµ(Ta, Tb) ¹ ΓΩ(ÃLµ(a, b)),∀a, b ∈ X.

Theorem 2.6. Let (X, Ω, ÃLµ) be a complete C∗-algebra-valued Eqbms and T : X →
X be an α-ΓΩ-contractive mapping satisfying the following conditions:

(a) T is α-admissible;
(b) there exists y0 ∈ X such that α(y0, T y0) º 1Ω and α(Ty0, y0) º 1Ω;
(c) T is continuous.

Then T has a fixed point in X.

Proof. Let y0 ∈ X such that α(y0, T y0) º 1ω and define a sequence {yn} such that
yn+1 = Tyn , ∀n ∈ N.
If yn = yn+1 for some n ∈ N, then yn is a fixed point for T .

Suppose that yn 6= yn+1 for all n ∈ N. Since T is α-admissible, we get

(2.1) α(y0, y1) = α(y0, T y0) º 1Ω ⇒ α(Ty0, T y1) = α(y1, y2) º 1Ω.
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By induction, we have

(2.2) α(yn, yn+1) º 1Ω, ∀n ∈ N.

By (2.1) and (2.2), we get

ÃLµ(yn, yn+1) = ÃLµ(Tyn−1, T yn) ¹ α(yn−1, yn)ÃLµ(Tyn−1, T yn) ¹ ΓΩ(ÃLµ(yn−1, yn).

By induction, we obtain

(2.3) ÃLµ(yn, yn+1) ¹ Γn
Ω(ÃLµ(y0, y1)

for all n ∈ N.
For n < m, we have

ÃLµ(yn, ym) ¹ µ(yn, ym)[ÃLµ(yn, yn+1) + ÃLµ(yn+1, ym)]

¹ µ(yn, ym)Γn
Ω(ÃLµ(y0, y1) + µ(yn, ym)µ(yn+1, ym)[ÃLµ(yn+1, yn+2) + ÃLµ(yn+2, ym)]

¹ µ(yn, ym)Γn
Ω(ÃLµ(y0, y1) + µ(yn, ym)µ(yn+1, ym)Γn+1

Ω (ÃLµ(y0, y1) + · · ·
¹ Γn

Ω(ÃLµ(y0, y1)[µ(y1, ym)µ(y2, ym) · · ·µ(yn−1, ym)µ(yn, ym)

+ µ(y1, ym)µ(y2, ym) · · ·µ(yn, ym)µ(yn+1, ym)ΓΩ(ÃLµ(y0, y1)) + · · ·
+ µ(y1, ym)µ(y2, ym)· · ·µ(yn, ym)µ(yn+1, ym) · · ·µ(ym−1, ym)Γm−n−1

Ω (ÃLµ(y0, y1))]

= Γn
Ω(ÃLµ(y0, y1)

m−1∑

j=n

Γj−n(ÃLµ(y0, y1))
j∏

i=1

µ(yi, ym).

Since lim
n→∞Γn(ÃLµ(y0, y1)) = 0, using Definition 2.3, we obtain lim

n→∞ÃLµ(yn, ym) = 0.

Thus {yn} is a left Cauchy sequence in X. Similarly, by taking α(Ty0, y0) º 1Ω for
M > n, we can prove that {yn} is a right Cauchy sequence in X. Hence {yn} is a
Cauchy sequence in X. Since (X, Ω, ÃLµ) is complete, there exists y ∈ X such that
yn → y as n → ∞. From continuity of T , it follows that yn+1 = Tyn → Ty as
n →∞. By uniqueness of the limit, we get Ty = y, which is a fixed point of T . ¤

To prove the uniqueness of the fixed point, we will consider the condition:

H: For all a, b ∈ X there exists c ∈ X such that α(a, c) º 1Ω, α(b, c) º 1Ω or
α(c, a) º 1Ω, α(c, b) º 1Ω.

Theorem 2.7. Suppose that (H) and all the assumptions of Theorem 2.6 hold.
Then we obtain the uniqueness of fixed points of T .

Proof. Suppose that a and b are two fixed points of T . From (H), there exists c ∈ X

such that α(a, c) º 1Ω and α(b, c) º 1Ω. Since T is α-admissible, we get
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α(a, Tnc) º 1Ω,α(b, Tnc) º 1Ω for all n ∈ N. Then

ÃLµ(a, Tnc) = ÃLµ(Ta, T (Tnc)) ¹ α(a, Tnc)ÃLµ(Ta, T (Tnc))

¹ Γn
Ω(ÃLµ(a, c))

for all n ∈ N. Since Γn
Ω(ÃLµ(a, c)) → 0Ω as n → ∞, Tnc = a. Similarly, Tnc = b as

n →∞. The uniqueness of the limit gives a = b. ¤

3. Application of Fixed Point Theorems

Let (X, Ω, ÃLµ) be a C∗-algebra-valued Eqbms. and T : X → X be a mapping.
Let us consider the fixed point equation

(3.1) y = Ty.

We say that the fixed point problem (3.1) is Hyers-Ulam stable via C∗-algebra-valued
extended quasi b-metric space if for each ε Â 0Ω and v ∈ X satisfying

(3.2) ÃLµ(Tv, v) ¹ ε,

there exists K Â 0Ω and u ∈ X satisfying the fixed point equation (3.1) such that

(3.3) ÃLµ(u, v) ¹ Kε.

Theorem 3.1. Let (X,Ω, ÃLµ) be a complete C∗-algebra-valued Eqbms. Suppose that
all the assumptions of Theorem 2.1 (resp., Theorem 2.7) hold. If µ(u, v)α(u, v) º 1Ω

for all ε-solutions u, v, then the fixed point equation (3.1) is Hyers-Ulam stable.

Proof. By Theorem 2.1, we have a unique u∗ ∈ X satisfying (3.1). Let ε Â 0ω

and v∗ ∈ X be a solution of (3.2), that is, u∗ = Tu∗ and ÃLµ(Tv∗, v∗) ¹ ε. Since
ÃLµ(Tu∗, u∗) = ÃLµ(u∗, u∗) = oΩ ¹ ε, by hypothesis, we have α(u∗, v∗) º 1Ω. Thus

ÃLµ(u∗, v∗) = ÃLµ(Tu∗, v∗)

¹ µ(Tu∗, v∗)[ÃLµ(Tu∗, T v∗) + ÃLµ(Tv∗, v∗)]

¹ µ(u∗, v∗)α(u∗, v∗)ÃLµ(Tu∗, T v∗) + µ(u∗, v∗)ε

¹ µ(u∗, v∗)α(u∗, v∗)ÃLµ(u∗, v∗) + µ(u∗, v∗)ε.

So 1− µ(u∗, v∗)α(u∗, v∗)ÃLµ(u∗, v∗) ¹ µ(u∗, v∗)ε. Thus we deduce

ÃLµ(u∗, v∗) ¹ µ(u∗, v∗)
(1− µ(u∗, v∗)α(u∗, v∗)

ε = Kε,

where K = µ(u∗,v∗)
1−µ(u∗,v∗)α(u∗,v∗) Â 0Ω. ¤
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