DOI QR코드

DOI QR Code

A study on the variation of the Korean marine ecosystem through biodiversity attributes

생물다양성 특성 분석을 통한 우리나라 주변 해양생태계 변화 연구

  • Jong Hee LEE (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Young Il SEO (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Sang Chul YOON (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Heejoong KANG (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Ji-Hoon CHOI (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Min-Je CHOI (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Jinwoo GIM (Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science)
  • 이종희 (국립수산과학원 연근해자원과) ;
  • 서영일 (국립수산과학원 연근해자원과) ;
  • 윤상철 (국립수산과학원 연근해자원과) ;
  • 강희중 (국립수산과학원 연근해자원과) ;
  • 최지훈 (국립수산과학원 연근해자원과) ;
  • 최민제 (국립수산과학원 연근해자원과) ;
  • 김진우 (국립수산과학원 연근해자원과)
  • Received : 2023.10.13
  • Accepted : 2023.11.22
  • Published : 2023.11.30

Abstract

In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.

Keywords

Acknowledgement

본 연구는 국립수산과학원 2023년도 수산시험연구사업 연근해 어업자원 평가 및 관리 연구(R2023002)의 지원을 받아 수행되었습니다.

References

  1. Alverson DL and Larkin PA. 1994. The state of the world fishery resources. Fisheries: fisheries science and management - Century 21. Voigtlander CD, ed. Oxford and IBH Publishing, New Delhi, 150-167. 
  2. Belkin IM. 2009. Rapid warming of large marine ecosystem. Prog Oceanogr 81, 207-213. https://doi.org/10.1016/j.pocean.2009.04.011. 
  3. Brander KM. 2018. Climate change not to blame for cod population decline. Nat Sustain 1, 262-264. https://doi.org/10.1038/s41893-018-0018-5. 
  4. Bryndum-Buchholz A, Tittensor DP and Lotze HK. 2021. The status of climate change adaptation in fisheries management: Policy, legislation and implementation. Fish Fish 22, 1248-1273. https://doi.org/10.1111/faf.12586. 
  5. Cheung WWL, Sarmiento JL, Dunne J, Frolicher TL, Lam VWY, Deng Palomares ML, Watson R and Pauly D. 2013a. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat Clim Chang 3, 254-258. https://doi.org/10.1038/nclimate1691. 
  6. Cheung WWL, Watson R and Pauly D. 2013b. Signature of ocean warming in global fisheries catch. Nature 497, 365-368. https://doi.org/10.1038/nature12156. 
  7. Dolan TE, Patrick WS and Link JS. 2016. Delineating the continuum of marine ecosystem-based management: a US fisheries reference point perspective. ICES J Mar Sci 73, 1042-1050. https://doi.org/10.1093/icesjms/fsv242. 
  8. Dulvy NK, Rogers SI, Jennings S, Stelzenmubller V, Dye SR and Skjoldal HR. 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45, 1029-1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x. 
  9. FAO. 2020. The state of world fisheries and aquaculture 2020. Sustainability in action. Food and Agriculture Organization, Rome, 206. https://doi.org/10.4060/ca9229en. 
  10. Free CM, Thorson JT, Pinsky ML, Oken KL, Wiedenmann J and Jensen OP. 2019. Impacts of historical warming on marine fisheries production. Science 363, 979-983. https://doi.org/10.1126/science.aau1758. 
  11. Free CM, Mangin T, Molinos JG, Ojea E, Burden M, Costello C and Gaines SD. 2020. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347. https://doi.org/10.1371/journal.pone.0224347. 
  12. Gaines SD, Costello C, Owashi B, Mangin T, Bone J, Molinos JG, Burden M, Dennis H., Halpern BS, Kappel CV, Kleisner KM and Ovando D. 2018. Improved fisheries management could offset many negative effects of climate change. Sci Adv 4, eaao1378. https://doi.org/10.1126/sciadv.aao1378. 
  13. Graham NE. 1995. Simulation of recent global temperature trend. Science 267, 666-671. https://doi.org/10.1126/science.267.5198.666. 
  14. Holsman KK, Hazen EL, Haynie A, Gourguet S, Hollowed A, Bograd SJ, Samhouri JF and Aydin K. 2019. Towards climate resiliency in fisheries management. ICES J Mar Sci 76, 1368-1378. https://doi.org/10.1093/icesjms/fsz031. 
  15. Hutchings JA and Myers RA. 1994. What can be learned from the collapse of a renewable resource? Atlantic Cod, Gadus morhua, of Newfoundland and Labrador. Can J Fisheries Aquatic Sci 51, 2126-2146. https://doi.org/10.1139/f94-214. 
  16. IPCC. 2019. IPCC special report on the ocean and cryosphere in a changing climate. Summary for policymakers. Portner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegria A, Nicolai M, Okem A, Petzold J, Rama B and Weyer NM, eds. Cambridge University Press, Cambridge, UK and New York, USA, 3-35. https://doi.org/10.1017/9781009157964.001. 
  17. Jackson JBC, Kirby MX, Berger WH, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ and Warner RR. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629-636. https://doi.org/10.1126/science.1059199. 
  18. Kang YH, Ju SJ and Park YG. 2012. Predicting impacts of climate change on Sinjido marine food web. Ocean Polar Res 34, 239-251. https://doi.org/10.4217/OPR.2012.34.2.239. 
  19. Kang HY, Kim C, Kim D, Lee YJ, Park HJ, Kundu GK, Kim YK, Bibi R, Jang J, Lee KH, Kim HW, Yun SG, Kim H and Kang CK. 2020. Identifying patterns in the multitrophic community and food-web structure of a low-turbidity temperate estuarine bay. Sci Rep 10, 16637. https://doi.org/10.1038/s41598-020-73628-6. 
  20. Kang HY, Lee YJ, Kim C, Kim D, Kim DH, Kim JH, Choi DL and Kang CK. 2021. Food web trophic structure at marine ranch sites off the east coast of Korea. Front Mar Sci 8, 653281. https://doi.org/10.3389/fmars.2021.653281. 
  21. Kim S and Kang S. 2000. Ecological variations and El Nino effects off the southern coast of the Korean Peninsula during the last three decades. Fish Oceanogr 9, 239-247. https://doi.org/10.1046/j.1365.2419.2000.00142.x. 
  22. Kim JG and Kim JG. 2023. Changes in climate factors and catches of fisheries in the Republic of Korea over the Three Decades. Water 15, 1952. https://doi.org/10.3390/w15101952. 
  23. Kim S, Zhang CI, Kim JY, Oh JH, Kang S and Lee JB. 2007. Climate variability and its effects on major fisheries in Korea. Ocean Sci J 42, 179-192. https://doi.org/10.1007/BF03020922. 
  24. Kim MJ, Hong JB, Han IS, Lee JS and Kim DH. 2023. Vulnerability assessment of Korean fisheries to climate change. Mar Policy 155, 105735. https://doi.org/10.1016/j.marpol.2023.105735. 
  25. Kirby RR, Beaugrand G and Lindley JA. 2009. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548-561. https://doi.org/10.1007/s10021-009-9241-9. 
  26. KOSIS. 2023. Statistic database for fisheries production. Korean Statistical Information Service, Retrieved from http://www.fips.go.kr. Accessed 23 May 2023. 
  27. Laurans M, Gascuel D, Chassot E and Thiam D. 2004. Changes in the trophic structure of fish demersal communities in West Africa in the three last decades. Aquat Living Resour 17, 163-173. https://doi.org/10.1051/alr:2004023. 
  28. Lee JH. 2012. A study on the ecosystem-based risk assessment of the Korean large purse seine fishery under the climate change. Ph.D. Thesis, Pukyoung National University, Korea, 142. 
  29. Lee MW. 2014. Ecosystem-based stock assessment and fisheries management in the west coast of Korea. Ph.D. Thesis, Pukyoung National University, Korea, 130. 
  30. Lee SK. 2018. Ecosystem-based stock assessment and fisheries management of diving fishery in the south sea of Korea. Ph.D. Thesis, Pukyoung National University, Korea, 137. 
  31. Lee JH, Lee JB, Zhang CI, Kang S, Choi YM and Lee DW. 2012. A study on fluctuation of the fishing grounds of target fishes by the Korean large purse seine fishery. J Kor Soc Fish Tech 48, 107-117. https://doi.org/10.3796/KSFT.2012.48.2.107. 
  32. Myers RA and Worm B. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423, 280-283. https://doi.org/10.1038/nature01610. 
  33. MOMAF. 2001. Study of a middle-long term comprehensive plan in fisheries resources and management. Ministry of Maritime Affairs and Fisheries, 490. 
  34. Noh J, Yoon SJ, Kim H, Lee C, Kwon BO, Lee Y, Hong S, Kim J, Ryu J and Khim JS. 2019. Anthropogenic influences on benthic food web dynamics by interrupted freshwater discharge in a closed Geum River estuary, Korea. Environ Int 131, 104981. https:// doi.org/10.1016/j.envint.2019.104981. 
  35. Nye JA, Link JS, Hare JA and Overholtz WJ. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. MEPS 393, 111-129. https://doi.org/10.3354/meps08220. 
  36. Park JH, Hwang KS and Kang YS. 2000. Variation of fishing condition and the winter warming in Korean waters. J Korean Soc Fish Res 3, 77-87. 
  37. Park HW, Zhang CI, Kwon YJ, Seo YI and Oh TY. 2013. A study on the risk scoring and risk index for the ecosystem-based fisheries assessment. J Kor Soc Fish Tech 49, 469-482. https://doi.org/10.3796/KSFT.2013.49.4.469. 
  38. Park TH, Lee CI, Kang CK, Kwak JH, Lee SH and Park HJ. 2020. Seasonal variation in food web structure and fish community composition in the East/Japan Sea. Estuaries Coast 43, 615-629. https://doi.org/10.1007/s12237-019-00530-4. 
  39. Pauly D, Christensen V, Dalsgaard J, Froese R and Torres Jr. F. 1998. Fishing down marine food webs. Science 279, 860-863. https://doi.org/10.1126/science.279.5352.860. 
  40. Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO and Dayton P. 2004. Ecosystem-based fishery management. Science 305, 346-347. https://doi.org/10.1126/science.1098222. 
  41. Seo YI. 2011. Ecosystem-based stock assessment and fisheries management in the southern sea of Korea. Ph.D. Thesis, Pukyoung National University, Korea, 168. 
  42. Seo YI, Zhang CI, Lee JB and Cha HK. 2011. Stock assessment by ecosystem risk analysis of large purse seine fishery in the southern sea of Korea. J Kor Soc Fish Tech 47, 369-389. https://doi.org/10.3796/KSFT.2011.47.4.369. 
  43. Seong KT, Hwang JD, Han IS, Go WJ, Suh YS and Lee JY. 2010. Characteristic for long-term trends of temperature in Korean waters. J Korean Soc Mar Environ Saf 16, 353-360. 
  44. Shannon CE. 1948. A mathematical theory of communication. The Bell System Technical Journal 27, 379-423, 623-656.  https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
  45. Shin D, Park TH, Lee CI, Hwang K, Kim DN, Lee SJ, Kang S and Park HJ. 2022a. Characterization of trophic structure of fish assemblages in the East and South Seas of Korea based on C and N stable isotope ratios. Water 14, 58. https://doi.org/10.3390/w14010058. 
  46. Shin D, Park TH, Lee CI, Jeong JM, Lee SJ, Kang S and Park HJ. 2022b. Trophic ecology of largehead hairtail Trichiurus japonicus in the South Sea of Korea revealed by stable isotope and stomach content analyses. Front Mar Sci 9, 910436. https://doi.org/10.3389/fmars.2022.910436. 
  47. Shin D, Park TH, Lee CI, Jo JH, C CG, Kang S and Park HJ. 2022c. Feeding ecology of common squid Todarodes pacificus in the South Sea of Korea determined through stable isotope and stomach content analyses. Water 14, 3159. https://doi.org/10.3390/w14193159. 
  48. van Denderen D, Maureaud AA, Andersen KH, Gaichas S, Lindegren M, Petrik CM, Stock CA and Collie J. 2023. Demersal fish biomass declines with temperature across productive shelf seas. Global Ecol Biogeogr 32, 1846-1857. https://doi.org/10.1111/geb.13732. 
  49. Won EJ, Choi B, Lee CH, Hong S, Lee JH and Shin KH. 2020. Variability of trophic magnification factors as an effect of estimated trophic position: Application of compound-specific nitrogen isotope analysis of amino acids. Environ Int 135, 105361. https://doi.org/10.1016/j.envint.2019.105361. 
  50. Worm B and Lotze HK. 2021. Climate change 3rd Edition. Marine biodiversity and climate change. Letcher TM, ed. Elsevier, 445-464. https://doi.org/10.1016/B978-0-12-821575-3.00021-9. 
  51. Yamada H, Matsumoto T and Miyabe N. 2009. Overview of the Pacific bluefin tuna fisheries. Collect Vol Sci Pap ICCAT, 63, 195-206. 
  52. Yoon SC, Zhang CI, Seo YI and Kim ZG. 2014. Ecosystembased resource assessment on coastal fisheries of Uljin in East Sea of Korea. J Kor Soc Fish Technol 50, 567-582, https://doi.org/10.3796/KSFT.2014.50.4.567. 
  53. Zhang CI. 2006. A study on the ecosystem-based management system for fisheries resource in Korea. J Kor Soc Fish Tech 42, 240-258. https://doi.org/10.3796/KSFT.2006.42.4.240
  54. Zhang CI and Lee SG. 2002. Fisheries Management. Sejong Publ. Co. Busan, 500. 
  55. Zhang CI and Lee SK. 2004. Trophic levels and fishing intensities in Korean marine ecosystems. J Korean Soc Fish Res 6, 140-152. 
  56. Zhang CI, Kim S, Gunderson D, Marasco R, Lee JB, Park HW and Lee JH. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fish Res 100, 26-41. https://doi.org/10.1016/j.fishres.2008.12.002. 
  57. Zhang CI, Hollowed AB, Lee JB and Kim DH. 2011. An IFRAME approach for assessing impacts of climate change on fisheries. ICES J Mar Sci 68, 1318-1328. https://doi.org/10.1093/icesjms/fsr073. 
  58. Zhu Y, Lin Y, Chu J, Kang B, Reygondeau G, Zhao Q, Zhang Z, Wang Y and Cheung WWL. 2022. Modelling the variation of demersal fish distribution in Yellow Sea under climate change. J Ocean Limnol 40, 1544-1555. https://doi.org/10.1007/s00343-021-1126-6.