DOI QR코드

DOI QR Code

Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV)

6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석

  • Han-Seop Shin (Department of Aerospace and Software Engineering, Gyeongsang National University) ;
  • Hae-Dong Kim (Department of Aerospace and Software Engineering, Gyeongsang National University)
  • 신한섭 (경상국립대학교 항공우주 및 소프트웨어공학부) ;
  • 김해동 (경상국립대학교 항공우주 및 소프트웨어공학부)
  • Received : 2023.07.01
  • Accepted : 2023.07.31
  • Published : 2023.08.31

Abstract

Korea Aerospace Research Institute has developed 6U Nano-Satellite high resolution video and image (HiREV) for the purpose of developing core technology for deep space exploration. The 6U HiREV Nano-Satellite has a mission of high-resolution image and video for earth observation, and the thermal pointing error between the lens and the camera module can occur due to the high temperature in camera module on mission mode. The thermal pointing error has a large effect on the resolution, so thermal design should solve it because the HiREV optical camera is developed based on commercial products that are the industrial level. So, when it operates in space, the thermal design is needed, because it has the best performance at room temperature. In this paper, three passive thermal designs were performed for the camera mission payload, and the thermal design was proved to be effective by performing on-orbit thermal analysis.

한국항공우주연구원에서는 심우주 탐사를 위한 핵심 기술 개발을 위해 6U급 초소형 위성인 HiREV(high resolution video and image)를 개발하였다. 6U HiREV 초소형 위성의 임무는 지구 관측을 위한 고해상도 영상 및 동영상 촬영이며, 임무 수행 시 고온의 카메라 모듈로 인해 렌즈와 모듈 간의 열 지향 오차가 발생할 수 있다. 열 지향 오차는 해상도에 큰 영향을 미치므로, 이를 해결하기 위해 열 설계가 필요하다. 또한 HiREV 광학 카메라는 지상에서 쓰이는 상용제품(COTS, Commercial Off The Shelf)을 이용하여 개발한 것이므로 상온에서 가장 좋은 성능을 가지며, 고온/저온 환경인 우주에서 활용되기 위해 별도의 열 설계가 적용되어야 한다. 본 논문에서는 임무 카메라 탑재체를 위해 3가지의 수동 열 설계가 수행되었으며, 궤도열 해석을 통하여 열 설계가 효과적임을 확인하였다.

Keywords

Acknowledgement

본 연구는 경상국립대학교 2022년 과학기술통신부의 재원으로 한국연구재단 미래우주교육센터(2022M1A3C2074536)의 지원을 받았으며 이에 감사드립니다.

References

  1. Shin HS, Shin HS, Kim MK, Kim HK, Kim HD, On-orbit thermal analysis and design of 6U HiREV Nano-Satellite, Proceedings of the Korean Society for Aeronautical and Space Sciences 2018 Spring Conference, Apr 2018. 
  2. Corpino S, Caldera M, Nichele F, Masoero M, Viola N, Thermal design and analysis of a nanosatellite in low earth orbit, Acta Astronaut. 115, 247-261 (2015). https://doi.org/10.1016/j.actaastro.2015.05.012 
  3. Kang SJ, Ha HW, Oh HU, On-orbit thermal analysis of pico-class satellite STEP Cube Lab for verification of fundamental space technology, J. Korean Soc. Aeronaut. Space Sci. 42, 795-801 (2014). https://doi.org/10.5139/JKSAS.2014.42.9.795 
  4. Yoo JG, Jin H, Seon JH, Jeong YH, Glaser D, Lee DH, et al., Thermal analysis of TRIO-CINEMA mission, J. Astron. Space Sci. 29, 23-31 (2012). https://doi.org/10.5140/JASS.2012.29.1.023 
  5. Chandrashekar S, Thermal analysis and control of MIST CubeSat, Master Thesis, KTH Royal Institute of Technology School of Electrical Engineering (2016).
  6. Oh HU, Park TY, Numerical investigation of on-orbit thermal characteristics for cube satellite with passive attitude stabilization method, J. Korean Soc. Aeronaut. Space Sci. 42, 423-429 (2014). https://doi.org/10.5139/JKSAS.2014.42.5.423 
  7. Bulut M, Sozbir N, Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations, Appl. Therm. Eng. 75, 1076-1083 (2015). https://doi.org/10.1016/j.applthermaleng.2014.10.059 
  8. Escobar E, Diaz M, Cristobal Zagal J, Evolutionary design of a satellite thermal control system: real experiments for a CubeSat mission, Appl. Therm. Eng. 105, 490-500 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.024 
  9. NASA, NASA repurposes passive thermal-control technology for CubeSats (2016) [Internet], viewed 2023 Jun 20, Available from: http:/www.nasa.gov/feature/goddard/2016/nasa-repurposes-passive-thermal-control-technology-for-cubesats 
  10. Eken M, Modular heat dissipation technique for a CubeSats, No. AFIT-ENY-15-S-73, Theses and Dissertations, Air Force Institute of Technology Wright-Patterson AFB OH Graduate School of Engineering and Management (2015). 
  11. Funase R, Ikari S, Miyoshi K, Kawabata Y, Nakajima S, et al., Mission to earth-moon lagrange point by a 6U cubeSat: EQUULEUS, IEEE Aerospa. Electron. Syst. Mag. 35, 30-44 (2020). https://doi.org/10.1109/MAES.2019.2955577 
  12. Kim HK, Jo Y, Choi S, Multi-objective optimization of node-based spacecraft radiator design, J. Spacecr. Rockets. 51, 1695-1708 (2014). https://doi.org/10.2514/1.A32763 
  13. Kim HK, Choi S, Park SO, Lee KH, Node-based spacecraft radiator design optimization, Adv. Space Res. 55, 1445-1469 (2015). https://doi.org/10.1016/j.asr.2014.09.007 
  14. Gilmore DG, Spacecraft Thermal Control Handbook, 2nd ed. (Aerospace Press, El Segundo, CA, 2002). 
  15. C&R Technologies, Sinda/Fluint Manual (1993) [Internet], viewed 2023 Jun 20, available from: https://usermanual.wiki/Document/SINDAFLUINTUSERSMANUAL.1284231692 
  16. Lee SI, Lee SM, Park DH, Analysis of thermal properties in LED package by via hole of FR4 PCB, J. Korean Inst. Illum. Electr. Install. Eng. 24, 57-63 (2010). https://doi.org/10.5207/JIEIE.2010.24.12.057 
  17. MatWeb, Your Source for Materials Information (nd) [Internet], viewed 2023 Jun 20, available from: Available from: http://www.matweb.com