DOI QR코드

DOI QR Code

우주 현지자원활용 글로벌 동향

Global Trends of In-Situ Resource Utilization

  • 투고 : 2023.07.15
  • 심사 : 2023.08.15
  • 발행 : 2023.08.31

초록

과거 1970년대까지의 달 표면탐사에서는 단기간 달에서의 임무 특성을 가지는 것에 비해 최근 달 표면탐사는 달에서의 장기체류와 이를 기반으로 궁극적으로 화성까지 탐사 범위를 확장하는 방향으로 진행되고 있다. 인간의 달표면 장기체류를 실현하기 위해서는 탐사 현지 자원을 활용하여 체류에 필요한 소비재나 연료 등의 현지 생산 및 사용이 중요한 전제가 된다. 국제우주탐사협의체(ISECG, International Space Exploration Coordination Group)에서 각국의 우주탐사 계획을 반영하여 제시하는 글로벌 우주탐사 로드맵에는 달표면 탐사로부터 화성탐사로 이어지는 발전 단계가 제시되며 각 단계에서 현지자원활용은 중요한 요소가 되고 있다. 본 논문에서는 국제우주탐사협의체의 현지자원활용(ISRU) 격차분석 보고서를 기반으로 현지자원활용의 기술 분야를 현지 연료 및 소비재 생산, 현지 건설, 우주상 제조, 그리고 생성 결과물의 보관 및 활용, 자원활용에 필요한 전력시스템 등과 같은 연관 분야로 분류하여 주요 분야에서의 기술 개발 및 검증 현황을 분석한다. 다수의 국가는 달 자원 중 극 지역 영구음영지역의 얼음물 이용 그리고 표토에서 산소 등의 추출에 우선 순위를 부여하고, 무인 착륙임무를 통하여 달 남극 영구음영지역 근처에서 물질 및 물 분포 확인을 준비하고 있다. 자원 활용을 위하여 수전해를 이용한 수소, 산소 등 연료 생산, 모사토를 이용한 달 표토에서 산소의 추출 등의 기술을 개발하고 있다. 자원활용 기술의 개발을 위하여 지상에 달표면 모사환경을 구현하고 기술의 개발, 시나리오의 시연 등을 통한 효율적 현지자원활용 구현 방법 등을 모색하고 있다. 지속 가능한 달 표면 탐사를 위하여 각국은 달 표면 도달, 자원의 조사, 물질의 추출 등에 서비스 구매 등 민간 영역의 능력을 활용하고 발전시키는 노력을 병행하고 있다.

In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

키워드

과제정보

본 논문은 한국항공우주연구원의 자체과제인 '우주현지자원활용(ISRU) 기술 시연 시스템 개념설계 연구'의 지원으로 이루어졌습니다.

참고문헌

  1. ISECG [International Space Exploration Coordination Group], The global exploration roadmap supplement, ISECG (2022) [Internet], viewed 2023 Jun 20, available from: https://www.globalspaceexploration.org/wp-content/isecg/GER_Supplement_Update_2022.pdf 
  2. Moon-to-Mars Architecture Definition Document (ESDMD-001), Exploration systems development mission directorate, NASA/TP-20230002706 (2023). 
  3. ISECG [International Space Exploration Coordination Group], The global exploration roadmap supplement, ISECG (2020) [Internet], viewed 2023 Jun 20, available from: https://www.globalspaceexploration.org/wp-content/uploads/2020/08/GER_2020_supplement.pdf 
  4. ISECG [International Space Exploration Coordination Group], In-situ resource utilization gap assessment report, ISECG (2021) [Internet], viewed 2023 Jun 20, available from: https://www.globalspaceexploration.org/wordpress/wp-content/uploads/2021/04/ISECG-ISRU-Technology-Gap-Assessment-Report-Apr-2021.pdf 
  5. Sanders G, Kleinhenz J, In situ resource utilization (ISRU): update on strategy, scope, plans, and priorities, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  6. Pieters CM, Goswami JN, Clark RN, Annadurai M, Boardman J, et al., Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1, Science 326, 568-572 (2009). https://doi.org/10.1126/science.1178658 
  7. ISRO [Indian Space Research Organisation], Chandrayaan-3 (2023) [Internet], viewed 2023 Sep 4, available from: https://www.isro.gov.in/Chandrayaan3.html 
  8. Lamboray B, SpaceResources.lu - recent developments, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  9. NASA, Polar resources ice mining experiment-1 (PRIME-1) (2022) [Internet], viewed 2023 Jul 31, available from: https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/PRIME-1 
  10. Quinn JW, Captain JE, Eichenbaum AS, Aguilar-Ayala R, Kleinhenz JE, et al., Polar resources ice mining experiment-1 (PRIME-1) NASA's first polar drilling and volatiles detection mission, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023.
  11. King I, Honeybee robotics, test campaign to baseline flight telemetry for the TRIDENT lunar drill on PRIME-1 and VIPER, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  12. NASA, VIPER mission overview (2022) [Internet], viewed 2023 Jul 31, available from: https://www.nasa.gov/viper/overview 
  13. NASA, Mars 2020 mission perseverance rover (2020) [Internet], viewed 2023 Jul 31, available from: https://mars.nasa.gov/mars2020/spacecraft/instruments/moxie/ 
  14. Hartvigsen J, OxEon Energy, Scale up and coupling of the MOXIE solid oxide electrolyzer for mission-scale lunar and Martian applications, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  15. Johns Hopkins University Applied Physics Laboratory, Lunar simulants [Internet], viewed 2023 Jul 31, available from: https://lsic.jhuapl.edu/Our-Work/Working-Groups/Lunar-Simulants.php 
  16. Ryu BH, Kim YJ, Jin H, Lee J, Advanced manufacturing process of Korea lunar simulant, Earth Space 2021. 222-228 (2021). https://doi.org/10.1061/9780784483374.022 
  17. Bell E, NASA Kennedy Space Center (KSC), Development of the advanced regolith ground operations (ARGO) test bed: a robotic excavation and construction test facility with simulated lunar environments, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  18. Yoo Y, Chung HS, Shin EL, Patrick R, Graham GF, et al., The KICT dirty thermal vacuum chamber (DTVC): large-scale space environment simulation of the Moon and Mars, Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, 19-23 Mar 2018. 
  19. Park S, Photoelectric current density measurement for lunar daytime simulation: guiding large-scale experiment design, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  20. Sutoh M, Japan Aerospace Exploration Agency (JAXA), Remote construction experiment for utilizing water resources on the Moon, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023. 
  21. Shimada J, Japan Aerospace Exploration Agency (JAXA), JAXA's concept of a lunar ISRU plant -In-situ production of LOX/LH2 from lunar regolith, Proceedings of the XXIII Space Resources Roundtable, Golden, CO, 6-9 Jun 2023.