DOI QR코드

DOI QR Code

하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers

  • 윤수빈 (명지대학교 토목환경공학과) ;
  • 이창현 (명지대학교 토목환경공학과) ;
  • 김영도 (명지대학교 토목환경공학과)
  • Yoon, Soo Bin (Department of Civil & Engineering, MyongJi University) ;
  • Lee, Chang Hyun (Department of Civil & Engineering, MyongJi University) ;
  • Kim, Young Do (Department of Civil & Engineering, MyongJi University)
  • 투고 : 2023.07.25
  • 심사 : 2023.11.08
  • 발행 : 2023.11.30

초록

수질오염 중 유기물 오염은 가장 흔히 발생한다. 물환경보전법에 의해 유기물질을 측정하는 지표에는 BOD, COD, TOC가 있다. 그 중 BOD, COD의 분석은 노동집약적이다. 그리고 생물분해가 불가능하거나 유독물질이 존재하는 유기물질일 경우에는 낮은 정확도를 나타내 환경부에서는 TOC 중심의 관리로 전환되고 있다. 오늘날 센서기술의 발전으로 다양한 항목을 센서를 통해 모니터링 가능하다. 본 연구에서는 분광측정기인 Spectro::lyser V3를 이용한 하천 TOC 디지털 모니터링을 진행했다. 우선 측정 장비에 대한 적용성 평가를 위해 안동하천실험센터에서 실험을 진행했다. 그리고 낙동강 합류부에서 측정한 데이터를 Kriging 기법을 활용하여 하천의 TOC 공간분포를 분석했다. 본 연구에서는 센서를 활용한 하천 TOC 모니터링 및 공간분포에 대한 연구를 제안했다. 실시간으로 하천 TOC 농도 변화를 모니터링 할 수 있으며, 이는 오염원 감시 및 대응에 있어 기초자료로 활용할 수 있다. 이러한 센서 기반 하천 모니터링은 시간적 해상도 및 실시간 데이터 취득에 있어 장점이 있는데, 다양한 공간 정보 해석 방법을 적용한다면 추후 수생태 건강성, 하천 취수원 선정, 성층 분석 등 다양한 연구에 기여할 수 있을 것으로 기대된다.

Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.

키워드

과제정보

이 논문은 행정안전부 지능형 상황관리 기술개발사업의 지원을 받아 수행된 연구입니다(2021-MOIS37-003)(RS-2021-ND631021).

참고문헌

  1. Ahn, T.U. (2020). A study for technical elements for the implementation of total pollution load control system in TOC. No. 11-1480523-004243-01, National Institute of Environmental Research, pp. 2-4. 
  2. Cho, Y.B., Oh, Y.G., Shin, D.C., and Park., C.H. (2014). "Distribution of total organic carbon and correlations between organic matters of sewage treatment plants" Journal of the Korean Society of Environmental Analysis, Vol. 17, No. 4, pp. 207-214. 
  3. Choi, B.W., and Kang, M.A. (2018). "Availability evaluation of TOC as the environmental standard - Survey of lakes in Nakdong River Basin -." Journal of Wetlands Research, Vol. 20, No. 2, pp. 173-180.  https://doi.org/10.17663/JWR.2018.20.2.173
  4. Choi, I.W., Kim, J.H., Im, J.K., Park, T.J., Kim, S.Y., Son, D.H., Huh, I.A., Rhew, D.H., and Yu, S.J. (2015). "Application of TOC standards for managing refractory organic compounds in industrial wastewater." Journal of Korean Society on Water Environment, Vol. 31, No. 1, pp. 29-34. 
  5. Choi, J.Y., and Han, D.H. (2011). "Development of water quality standard for TOC as organic matter index." Seoul Studies, Vol. 12, No. 3, pp. 173-184.  https://doi.org/10.23129/SEOULS.12.3.201109.173
  6. Choi, S.H., Jeong, M.E., Joo, K.Y., Choi, Y.J., Yoon, N.N., Kwak, J.S., Lee, J.H., Kim, Y.R., and Jeon, D.Y. (2020). "Study on correlations between total organic carbon and organic matter indexes in industrial wastewater from Busan." Journal of Environmental Analysis, Health and Toxicology, Vol. 23, No. 1, pp. 1-8.  https://doi.org/10.36278/jeaht.23.1.1
  7. Hwang, S.H., and Park, J.C. (2018). "Management of TOC and COD organic matter of effluents in sewage treatment plants." Journal of Environmental Science International., Vol. 27, No. 4, pp. 261-266.  https://doi.org/10.5322/JESI.2018.27.4.261
  8. Jeong, D.H., Choi, I.C., Cho, Y.S., Ahn, K.H., Chung, H.M., Kwon, D.S., Park, H.W., Shin, H.S., and Hur, J. (2014). "Characteristics of TOC in effluent discharge from public sewage treatment works in Korea." Journal of the Korean Society of Water and Wastewater, Vol. 28, No. 6, pp. 657-668.  https://doi.org/10.11001/jksww.2014.28.6.657
  9. Jo, S.H., Kang, M.A., Choo, Y.Y., Jeong, G.C., Jung, D.H., and Yi, J.H. (2006). "Impact assessment of river water quality using organic pollutant index - Industrial waste water -." The Journal of Engineering Geology, Vol. 16, No. 4, pp. 373-379. 
  10. Jung, K.Y., Ahn, J.M., Lee, K.L., Lee, I.J., Yu, J.J., Cheon, S.U., Kim, K.S., and Han, K.Y. (2015). "Temporal and spatial analysis of non-biodegradable organic pollutants in the Geumho Riv er system." Journal of Environmental Science International, Vol. 24, No. 11, pp. 1343-1362.  https://doi.org/10.5322/JESI.2015.24.11.1343
  11. Kim, Y.S., and Lee, E.J. (2019). "Establishment of target water quality for TOC of total water load management system." Journal of Korean Society on Water Environment, Vol. 35, No. 6, pp. 520-538.  https://doi.org/10.15681/KSWE.2019.35.6.520
  12. Kwon, E.K., Park, S.H., and Lee, W.T. (2021). "Comparison of coal-, coconut-, and wood-based activated carbons for removal of organic matters in wastewater treatment plant effluent." Journal of Korean Society of Environmental Engineers, Vol. 43, No. 4, pp. 257-264.  https://doi.org/10.4491/KSEE.2021.43.4.257
  13. Lee, C.H., Park, J.G., Kim, K.D., Ryu, S.W., Kim, D.S., and Kim, Y.D. (2022). "Two-dimensional spatial distribution analysis using water quality measurement results at river junctions." Journal of Civil and Environmental Engineering Research, Vol. 42, No. 3, pp. 343-350. 
  14. Lee, S.G., Kwon, Y.J., Hwang, S.M., Kim, J.R., and Jeon, S.S. (2006). "Determination of on-line TOC monitoring in water quality monitoring system." Journal of the Korean Society for Environmental Analysis, Vol. 9, No. 4 pp. 235-242. 
  15. Lee, S.T., Lee, Y.H., Hong, K.P., Lee, S.D., Kim, M.K., Park, J.H., and Seo, D.C. (2013). "Comparison of BOD, COD, TOC and DOC as the indicator of organic matter pollution of agricultural surface water in Gyeongnam Province." Korean Journal of Soil Science and Fertilizer, Vol. 46, No. 5, pp. 327-332.  https://doi.org/10.7745/KJSSF.2013.46.5.327
  16. Lyu, J.H., and Lee, D.G. (2007). "Inquiry of water environment in Mihocheon (Stream) - Water quality monitoring focused on TOC -." Journal of Korean Society on Water Environment, Vol. 23, No. 5, pp. 731-739. 
  17. Park, S.H., Lee, C.Y., Kim, K.T., Kim, H.W., and Lee, W.T. (2022). "Comparison of COD and TOC in influents and effluents of six industrial wastewater treatment plants in Korea." Journal of Korean Society of Environmental Engineers, Vol. 44, No. 5, pp. 143-149.  https://doi.org/10.4491/KSEE.2022.44.5.143
  18. Shim, K.H., Shin, S.G., Kim, S.G., Kim, Y.G., and Kim, G.H. (2020). "Priority selection of water quality improvement through water quality data of tributaries of Nakdong River." Journal of Korean Society on Water Environment, Vol. 36, No. 5, pp. 364-372.