DOI QR코드

DOI QR Code

Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage

  • Pinku Debnath (Mechanical Engineering Department, National Institute of Technology Agartala) ;
  • K.M. Pandey (Mechanical Engineering Department, National Institute of Technology Silchar)
  • Received : 2023.03.05
  • Accepted : 2023.05.23
  • Published : 2023.05.25

Abstract

The detonation combustion is a supersonic combustion process follows on shock wave oscillations in detonation tube. In this paper numerical studies are carried out combined effect of blockage ratio and spacing of obstacle on detonation wave propagation of hydrogen-air mixture in pulse detonation combustor. The deflagration to detonation transition of stoichiometric (ϕ=1)fuel-air mixture in channel has been analyzed for effect of blockage ratio (BR)=0.39, 0.51, 0.59, 0.71 with spacing of 2D and 3D. The reactive Navier-Stokes equation is used to solve the detonation wave propagation mechanism in Ansys Fluent platform. The result shows that fully developed detonation wave initiation regime is observed near smaller vortex generator ratio of BR=0.39 inside the combustor. The turbulent rate of reaction has also a great significance role for shock wave structure. However, vortices of rapid detonation wave are appears near thin boundary layer of each obstacle. Finally, detonation combustor demonstrates the superiority of pressure gain combustor with turbulent rate of reaction of 0.6 kg mol/m3 -s inside the detonation tube with obstacle spacing of 12 cm, this blockage enhanced the turbulence intensity and propulsive thrust. The successful detonation wave propagation speed is achieved in shortest possible time of 0.031s with a significance magnitude of 2349 m/s, which is higher than Chapman-Jouguet (C-J) velocity of 1848 m/s. Furthermore, stronger propulsive thrust force of 36.82 N is generated in pulse time of 0.031s.

Keywords

Acknowledgement

The author would like to thank the Department of Mechanical Engineering National Institute of Technology Agartala for providing the research facilities.

References

  1. Alam, N., Sharma, K.K. and Pandey, K.M. (2019), "Numerical investigation of flame propagation and performance of obstructed pulse detonation engine with variation of hydrogen and air", J. Brazil. Soc. Mech. Sci. Eng., 41, 502. https://doi.org/10.1007/s40430-019-2024-0.
  2. ANSYS (2011), ANSYS Fluent 14.0 Theory Guide, ANSYS Inc., Canonsburg.
  3. Ciccarelli, G., Johansen, C.T. and Parravani, M. (2010), "The role of shock-flame interactions on flame acceleration in an obstacle laded channel", Combus. Flame, 157(11), 2125-2136. https://doi.org/10.1016/j.combustflame.2010.05.003.
  4. Coates, A.M., Mathias, D.L. and Cantwell, B.J. (2019), "Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture", Combus. Flame, 209, 278-290. https://doi.org/10.1016/j.combustflame.2019.07.044.
  5. Craig, T.J. (2009), "Experimental and numerical investigation of flame acceleration in an obstructed channel", PhD Thesis, Queen's University Kingston, Ontario, Canada.
  6. Debnath, P. and Pandey, K.M. (2014), "Effect of blockage ratio on detonation flame acceleration in pulse detonation combustor using CFD", Appl. Mech. Mater., 656, 64-71. https://doi.org/10.4028/www.scientific.net/AMM.656.64.
  7. Debnath, P. and Pandey, K.M. (2017), "Exergetic efficiency analysis of hydrogen-air detonation in pulse detonation combustor using CFD", Int. J. Spray Combus. Dyn., 9(1), 44-54. https://doi.org/10.1177/1756827716653344.
  8. Debnath, P. and Pandey, K.M. (2017), "Numerical investigation of detonation combustion wave in pulse detonation combustor with ejector", J. Appl. Fluid Mech., 10(2), 725-733. https://doi.org/10.18869/ACADPUB.JAFM.73.239.27266.
  9. Debnath, P. and Pandey, K.M. (2020), "Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle", Adv. Aircraft Spacecraft Sci., 7(3), 187-202. https://doi.org/10.12989/aas.2020.7.3.187.
  10. Debnath, P. and Pandey, K.M. (2021), "Effect of operating parameters on application based performance analysis of PDC: A recent review", Mater. Today: Proc., 42(7), 6702-6707. https://doi.org/10.1016/j.matpr.2020.12.226.
  11. Debnath, P. and Pandey, K.M. (2021), "Numerical analysis of detonation combustion wave in pulse detonation combustor with modified ejector with gaseous and liquid fuel mixture", J. Therm. Anal. Calorim., 145, 3243-3254. https://doi.org/10.1007/s10973-020-09842-1.
  12. Debnath, P. and Pandey, K.M. (2022), "A state of art review on thermodynamics performance analysis in pulse detonation combustor", Applications of Calorimetry, Book Chapter.
  13. Debnath, P. and Pandey, K.M. (2023), "Numerical studies on detonation wave in hydrogen-fueled pulse detonation combustor with shrouded ejector", J. Brazil. Soc. Mech. Sci. Eng., 45, 1-15. https://doi.org/10.1007/s40430-023-04036-w.
  14. Eder, A. and Brehm, N. (2001), "Analytical and experimental insights into fast deflagration, detonation and deflagration to detonation transition process", Heat Mass Transf., 37, 543-548. https://doi.org/10.1007/s002310100238.
  15. Gamezo, V.N., Ogawa, T. and Oran, E.S. (2007), "Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture", Proc. Combus. Inst., 31(2), 2463-2471. https://doi.org/10.1016/j.proci.2006.07.220.
  16. Gamezo, V.N., Ogawa, T. and Oran, E.S. (2008), "Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing", Combus. Flame, 155(1-2), 302-315. https://doi.org/10.1016/j.combustflame.2008.06.004.
  17. Glassman, I., Yetter, R.A. and Glumac, N.G. (2014), Combustion, Academic Press.
  18. Heidari, A. and Wen, J.X. (2014), "Flame acceleration and transition from deflagration to detonation in hydrogen explosions", Int. J. Hydrog. Energy, 39, 6184-6200. https://doi.org/10.1016/j.ijhydene.2014.01.168.
  19. Jeffrey, A.R. (2018), "Parametric cycle analysis of an ideal pulse detonation engine supersonic branch", Therm. Sci. Eng. Progr., 5, 296-302. https://doi.org/10.1016/j.tsep.2017.12.009.
  20. Johansen, C. and Ciccarelli, G. (2010), "Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel", Combus. Theor. Model., 14(2), 235-255. https://doi.org/10.1080/13647830.2010.483020.
  21. Johansen, C. and Ciccarelli, G. (2013), "Modeling the initial flame acceleration in an obstructed channel using large eddy simulation", J. Loss Preven. Proc. Indus., 26, 571-585. https://doi.org/10.1016/j.jlp.2012.12.005.
  22. Johansen, C.T. and Ciccarelli, G. (2009), "Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel", Combus. Flame, 156(2), 405-416. https://doi.org/10.1016/j.combustflame.2008.07.010.
  23. Kailasanath, K. (2000), "Review of propulsion applications of detonation waves", AIAA J., 38(9), 1698-1708. https://doi.org/10.2514/2.1156.
  24. Kessler, D.A., Gamezo, V.N., Oran, E.S. and Zipf, R.K. (2009), "Simulation of deflagration to detonation transition in premixed methane-air in large-scale channels with obstacles", 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, January.
  25. Li, M., Liu, D., Shen, T., Sun, J. and Xiao, H. (2021), "Effects of obstacle layout and blockage ratio on flame acceleration and DDT in hydrogen-air mixture in a channel with an array of obstacles", Int. J. Hydrog. Energy, 47(8), 5650-5662. https://doi.org/10.1016/j.ijhydene.2021.11.178.
  26. Liu, Z., Braun, J. and Paniagua, G. (2020), "Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with optimized end walls", Int. J. Mech. Sci., 188, 105918. https://doi.org/10.1016/j.ijmecsci.2020.105918.
  27. Ma, H., Xia, Z., Gao, W., Zhuo, C. and Wang, D. (2018), "Numerical simulation of the deflagration to-detonation transition of iso-octane vapor in an obstacle-filled tube", Int. J. Spray Combus. Dyn., 10(3), 244-259. https://doi.org/10.1177/1756827718758047.
  28. McBride, B.J. and Gordon, S. (1996), "Computer program for calculation of complex chemical equilibrium compositions and application", NASA RP-1311.
  29. Moen, I.O., Donato, M., Knystautas, R. and Lee, J.H. (2003), "Flame acceleration due to turbulence produced by obstacles", Combus. Flame, 39(1), 21-32. https://doi.org/10.1016/0010-2180(80)90003-6.
  30. Nguyen, V.B., Li, J.M., Chang, P., Teo, C.J. and Khoo, B.C. (2018), "Effect of ethylene fuel/air equivalence ratio on the dynamics of deflagration-to-detonation transition and detonation propagation process", Combus. Sci. Technol., 190(9), 1630-1658. https://doi.org/10.1080/00102202.2018.1461091.
  31. Ogawa, T., Gamezo, V.N. and Oran, E.S. (2013), "Flame acceleration and transition to detonation in an array of square obstacles", J. Loss Prev. Proc. Indus., 26, 355-362. https://doi.org/10.1016/j.jlp.2011.12.009.
  32. Pandey, K.M. and Debnath, P. (2016), "Reviews on recent advances in pulse detonation engines", J. Combus., 2016, Article ID 4193034. https://doi.org/10.1155/2016/4193034.
  33. Rudy, W., Porowski, R. and Teodorczyk, A. (2011), "Propagation of hydrogen-air detonation in tube with obstacles", J. Power Technol., 91(3), 122-129.
  34. Sun, X. and Lu, S. (2020), "Effect of obstacle thickness on the propagation mechanisms of a Detonation wave", Energy, 198, 117186. https://doi.org/10.1016/j.energy.2020.117186.
  35. Tabet, F, Sarh, B., Birouk, M. and Gokalp, I. (2012), "The near-field region behaviour of hydrogen-air turbulent non-premixed flame", Heat Mass Transfer, 48, 359-371. https://doi.org/10.1007/s00231-011-0889-2.
  36. Tangirala, V. E., Dean, A.J., Pinard, P.F. and Varatharajan, B. (2005), "Investigations of cycle processes in a pulsed detonation engine operating on fuel-air mixtures", Proc. Combus. Inst., 30, 2817-2824. https://doi.org/10.1016/j.proci.2004.08.208.
  37. Teodorczyk, A. (2007), "Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels", J. Loss Prev. Proc. Indus., 21, 174-153. https://doi.org/10.1016/j.jlp.2007.06.017.
  38. Teodorczyk, A., Drobniak, P. and Dabkowski, A. (2009), "Fast turbulent deflagration and DDT of hydrogen-air mixtures in small obstructed channel", Int. J. Hydrog. Energy, 34, 5887-5893. https://doi.org/10.1016/j.ijhydene.2008.11.120.
  39. Valiev, D., Bychkov, V., Akkerman, V., Law, C.K. and Eriksson, E.L. (2009), "Flame acceleration in channels with obstacles in the deflagration-to-detonation transition", Combus. Flame, 157(5), 1012-1021. https://doi.org/10.1016/j.combustflame.2009.12.021.
  40. Xiao, H. and Oran, E.S. (2020), "Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes", Combus. Flame, 220, 378-393. https://doi.org/10.1016/j.combustflame.2020.07.013.