과제정보
The animal experiments were supported by Prof. Ji-Hyeon Oh and Dr. Yei-Jin Kang.
참고문헌
- Manlove AE, Romeo G, Venugopalan SR. Craniofacial growth: current theories and influence on management. Oral Maxillofac Surg Clin North Am 2020;32:167-75. https://doi.org/10.1016/j.coms.2020.01.007
- Nonaka K, Nakata M. Genetic and environmental factors in the longitudinal growth of rats: III. Craniofacial shape change. J Craniofac Genet Dev Biol 1988;8:337-44. https://pubmed.ncbi.nlm.nih.gov/3220936/
- Varrela J. Genetic and epigenetic regulation of craniofacial development. Proc Finn Dent Soc 1991;87:239-44. https://pubmed.ncbi.nlm.nih.gov/1896436/
- De Clerck HJ, Proffit WR. Growth modification of the face: a current perspective with emphasis on Class III treatment. Am J Orthod Dentofacial Orthop 2015;148:37-46. https://doi.org/10.1016/j.ajodo.2015.04.017
- Frankel R, Frankel C. A functional approach to treatment of skeletal open bite. Am J Orthod 1983;84:54-68. https://doi.org/10.1016/0002-9416(83)90148-3
- Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95. https://doi.org/10.1038/cr.2011.22
- Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81-120. https://doi.org/10.1146/annurev.biochem.70.1.81
- Adithya SP, Balagangadharan K, Selvamurugan N. Epigenetic modifications of histones during osteoblast differentiation. Biochim Biophys Acta Gene Regul Mech 2022;1865:194780. https://doi.org/10.1016/j.bbagrm.2021.194780
- Yi SJ, Lee H, Lee J, Lee K, Kim J, Kim Y, et al. Bone remodeling: histone modifications as fate determinants of bone cell differentiation. Int J Mol Sci 2019;20:3147. https://doi.org/10.3390/ijms20133147
- Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem 2005;96:533-42. https://doi.org/10.1002/jcb.20544
- Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 2005;20:2254-63. https://doi.org/10.1359/JBMR.050813
- Kim JY, Kweon HY, Kim DW, Choi JY, Kim SG. 4-Hexylresorcinol inhibits class I histone deacetylases in human umbilical cord endothelial cells. Appl Sci 2021;11:3486. https://doi.org/10.3390/app11083486
- Choi KH, Kim DW, Lee SK, Kim SG, Kim TW. The administration of 4-Hexylresorcinol accelerates orthodontic tooth movement and increases the expression level of bone turnover markers in ovariectomized rats. Int J Mol Sci 2020;21:1526. https://doi.org/10.3390/ijms21041526
- Lee IS, Kim DW, Oh JH, Lee SK, Choi JY, Kim SG, et al. Effects of 4-Hexylresorcinol on craniofacial growth in rats. Int J Mol Sci 2021;22:8935. https://doi.org/10.3390/ijms22168935
- Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson KF, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 2005;28:1636-42. https://doi.org/10.2337/diacare.28.7.1636
- Wada J, Nakatsuka A. Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med Okayama 2016;70:151-8. https://doi.org/10.18926/AMO/54413
- Sangwung P, Petersen KF, Shulman GI, Knowles JW. Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology 2020;161:bqaa017. https://doi.org/10.1210/endocr/bqaa017
- Sifuentes-Franco S, Pacheco-Moises FP, Rodriguez-Carrizalez AD, Miranda-Diaz AG. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res 2017;2017:1673081. https://doi.org/10.1155/2017/1673081
- Lee IS, Chang JH, Kim DW, Kim SG, Kim TW. The effect of 4-hexylresorinol administration on NAD+ level and SIRT activity in Saos-2 cells. Maxillofac Plast Reconstr Surg 2021;43:39. https://doi.org/10.1186/s40902-021-00326-2
- Ghodsi M, Larijani B, Keshtkar AA, Nasli-Esfahani E, Alatab S, Mohajeri-Tehrani MR. Mechanisms involved in altered bone metabolism in diabetes: a narrative review. J Diabetes Metab Disord 2016;15:52. https://doi.org/10.1186/s40200-016-0275-1
- Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus - a systematic review. Bone 2016;82:69-78. https://doi.org/10.1016/j.bone.2015.02.019
- Qi S, He J, Han H, Zheng H, Jiang H, Hu CY, et al. Anthocyanin-rich extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in rats. Food Funct 2019;10:5350-60. https://doi.org/10.1039/c9fo00681h
- Starup-Linde J. Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol (Lausanne) 2013;4:21. https://doi.org/10.3389/fendo.2013.00021
- Yao S, Du Z, Xiao L, Yan F, Ivanovski S, Xiao Y. Morphometric changes of osteocyte lacunar in diabetic pig mandibular cancellous bone. Biomolecules 2022;13:49. https://doi.org/10.3390/biom13010049
- Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging 2016;11:1317-24. https://doi.org/10.2147/CIA.S115472
- Wang N, Wang L, Huang C. Association of total testosterone status with bone mineral density in adults aged 40-60 years. J Orthop Surg Res 2021;16:612. https://doi.org/10.1186/s13018-021-02714-w
- Chen H, Chan DC. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 2017;26:39-48. https://doi.org/10.1016/j.cmet.2017.05.016
- Kim JY, Kim DW, Lee SK, Choi JY, Che X, Kim SG et al. Increased expression of TGF-β1 by 4-hexylresorcinol is mediated by endoplasmic reticulum and mitochondrial stress in human umbilical endothelial vein cells. Appl Sci 2021;11:9128. https://doi.org/10.3390/app11199128
- Kim SG. 4-Hexylresorcinol: pharmacologic chaperone and its application for wound healing. Maxillofac Plast Reconstr Surg 2022;44:5. https://doi.org/10.1186/s40902-022-00334-w
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20. https://doi.org/10.1038/414813a