DOI QR코드

DOI QR Code

Effect of exercise interventions on sarcopenic obesity in middle-aged and older adults: a comprehensive review

  • 투고 : 2023.10.05
  • 심사 : 2023.11.16
  • 발행 : 2023.11.30

초록

Purpose: This study examined the definitions, diagnostic criteria, and measurements of sarcopenic obesity and identified effective exercise interventions that improve cardiometabolic outcomes in middle-aged and older adults, in whom the prevalence of sarcopenic obesity is increasing. Methods: This comprehensive review followed the principles of literature search, data extraction, and review, as described in the PRISMA 2009 guidelines. Results: The 11 articles included in this study presented different concepts of sarcopenic obesity. Exercise interventions for sarcopenic obesity varied in their effects. Resistance exercise improved muscle mass and physical function, while aerobic exercise primarily impacted obesity and cardiometabolic indicators. Combined exercise had mixed results across indicators. Conclusion: This study addressed a pressing public health concern in the context of an aging population, acknowledged the unique challenges of sarcopenic obesity, and attempted to clarify definitions and assessment methods, while identifying effective exercise interventions to reduce cardiometabolic risk. Sarcopenic obesity is a multifaceted condition with varying definitions and diagnostic criteria. Its association with cardiometabolic risk underscores the need for comprehensive assessments considering both muscle and obesity indicators. While exercise interventions hold promise for managing sarcopenic obesity, further research is required to establish effective strategies.

키워드

참고문헌

  1. Statistics Korea. 2020 Statistics on the Aged [Internet]. Seoul: Statistics Korea; 2020 [2023 Sep 28]. Available from: https://kostat.go.kr/board.es?mid=a20111030000&bid=11759&act=view&list_no=388599
  2. Nam GE, Kim YH, Han K, Jung JH, Rhee EJ, Lee SS, et al. Obesity fact sheet in Korea, 2019: prevalence of obesity and abdominal obesity from 2009 to 2018 and social factors. Journal of Obesity and Metabolic Syndrom. 2020;29(2):124-132. http://doi.org/10.7570/jomes20058
  3. Welfare KMoHa. National Health Statistics - The eighth Korea National Health and Nutrition Examination Survey (KNHAES VI-1) 2019. Agency DCaP; 2021.
  4. Hyun KR, Kang S, Lee S. Population aging and healthcare expenditure in Korea. Health Economics. 2016;25(10):1239-1251. http://doi.org/10.1002/hec.3209
  5. Dipietro L, Dziura J. Exercise: a prescription to delay the effects of aging. The Physician and Sportsmedicine. 2000;28(10):77-78. http://doi.org/10.3810/psm.2000.10.1253
  6. Ponti F, Santoro A, Mercatelli D, Gasperini C, Conte M, Martucci M, et al. Aging and imaging assessment of body composition: from fat to facts. Frontiers in Endocrinology. 2020;10(861). http://doi.org/10.3389/fendo.2019.00861 
  7. 7.Koliaki C, Liatis S, Dalamaga M, Kokkinos A. Sarcopenic obesity: epidemiologic evidence, pathophysiology, and therapeutic perspectives. Current Obesity Reports. 2019;8(4):458-471. http://doi.org/10.1007/s13679-019-00359-9
  8. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology. 1998;147(8):755-763. http://doi.org/10.1093/oxfordjournals.aje.a009520
  9. Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. Journal of Cellular Physiology. 2021;236(4):2393-2412. http://doi.org/10.1002/jcp.30033
  10. Donini LM, Busetto L, Bauer JM, Bischoff S, Boirie Y, Cederholm T, et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clinical Nutrition. 2020;39(8):2368-2388. http://doi.org/10.1016/j.clnu.2019.11.024
  11. Hwang B, Lim JY, Lee J, Choi NK, Ahn YO, Park BJ. Prevalence rate and associated factors of sarcopenic obesity in korean elderly population. Journal of Korean Medical Science. 2012;27(7):748-755. http://doi.org/10.3346/jkms.2012.27.7.748
  12. Perna S, Peroni G, Faliva MA, Bartolo A, Naso M, Miccono A, et al. Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clinical and Experimental Research. 2017;29(6):1249-1258. http://doi.org/10.1007/s40520-016-0701-8
  13. Ozturk ZA, Turkbeyler IH, Abiyev A, Kul S, Edizer B, Yakaryilmaz FD, et al. Health-related quality of life and fall risk associated with age-related body composition changes; sarcopenia, obesity and sarcopenic obesity. Internal Medicine Journal. 2018;48(8):973-981. http://doi.org/10.1111/imj.13935
  14. Atmis V, Yalcin A, Silay K, Ulutas S, Bahsi R, Turgut T, et al. The relationship between all-cause mortality sarcopenia and sarcopenic obesity among hospitalized older people. Aging Clinical and Experimental Research. 2019;31(11):1563-1572. http://doi.org/10.1007/s40520-019-01277-5
  15. Oh C, Jeon BH, Reid Storm SN, Jho S, No JK. The most effective factors to offset sarcopenia and obesity in the older Korean: physical activity, vitamin D, and protein intake. Nutrition. 2017;33:169-173. http://doi.org/10.1016/j.nut.2016.06.004
  16. Coker RH, Wolfe RR. Bedrest and sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care. 2012;15(1):7-11. http://doi.org/10.1097/MCO.0b013e32834da629
  17. Rolland Y, Czerwinski S, Kan G, Morley J, Cesari M, Onder G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. The Journal of Nutrition Health and Aging. 2008;12:433-450. http://doi.org/10.1007/BF02982704
  18. Janssen I, Heymsfield S, Ross R. Low relative skeletal muscle mass is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002; 50:889-896. http://doi.org/10.1046/j.1532-5415.2002.50216.x
  19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine. 2009;6(7):e1000097. http://doi.org/10.1371/journal.pmed.1000097
  20. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. http://doi.org/10.1136/bmj.d5928
  21. Hong SH, Choi KM. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. International Journal of Molecular Sciences. 2020;21(2). http://doi.org/10.3390/ijms21020494
  22. Hamasaki H, Kawashima Y, Adachi H, Moriyama S, Katsuyama H, Sako A, et al. Associations between lower extremity muscle mass and metabolic parameters related to obesity in Japanese obese patients with type 2 diabetes. PeerJ. 2015;3:e942. http://doi.org/10.7717/peerj.942
  23. Kim S, Kim M, Lee Y, Kim B, Yoon TY, Won CW. Calf circumference as a simple screening marker for diagnosing sarcopenia in older Korean adults: the Korean frailty and aging cohort study (KFACS). Journal of Korean Medical Science. 2018;33(20):e151. http://doi.org/10.3346/jkms.2018.33.e151
  24. Kawakami R, Murakami H, Sanada K, Tanaka N, Sawada SS, Tabata I, et al. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatrics & Gerontology International. 2015;15(8):969-976. http://doi.org/10.1111/ggi.12377
  25. Pagotto V, Santos KFD, Malaquias SG, Bachion MM, Silveira EA. Calf circumference: clinical validation for evaluation of muscle mass in the elderly. Revista Brasileira de Enfermagem. 2018;71(2):322-328. http://doi.org/10.1590/0034-7167-2017-0121
  26. Mienche M, Setiati S, Setyohadi B, Kurniawan J, Laksmi PW, Ariane A, et al. Diagnostic performance of calf circumference, thigh circumference, and SARC-F questionnaire to identify sarcopenia in elderly compared to Asian working group for sarcopenia's diagnostic standard. Acta Medica Indonesiana. 2019;51(2):117-127.
  27. Kim HR, Kim HS. Optimal cutoffs of cardiometabolic risk for postmenopausal Korean women. Asian Nursing Research. 2017;11(2):107-112. http://doi.org/10.1016/j.anr.2017.05.003
  28. Lundblad MW, Jacobsen BK, Johansson J, Grimsgaard S, Andersen LF, Hopstock LA. Anthropometric measures are satisfactory substitutes for the DXA-derived visceral adipose tissue in the association with cardiometabolic risk-The Tromso Study 2015-2016. Obesity Science and Practice. 2021;7(5):525-534. http://doi.org/10.1002/osp4.517
  29. Cota BC, Ribeiro SAV, Priore SE, Juvanhol LL, de Faria ER, de Faria FR, et al. Anthropometric and body composition parameters in adolescents with the metabolically obese normal-weight phenotype. British Journal of Nutrition. 2022;127(10):1458-1466. http://doi.org/10.1017/s0007114521002427
  30. Park JS, Cho MH, Ahn CW, Kim KR, Huh KB. The association of insulin resistance and carotid atherosclerosis with thigh and calf circumference in patients with type 2 diabetes. Cardiovascular Diabetology. 2012;11:62. http://doi.org/10.1186/1475-2840-11-62
  31. Heitmann BL, Frederiksen P. Thigh circumference and risk of heart disease and premature death: prospective cohort study. BMJ. 2009;339:b3292. http://doi.org/10.1136/bmj.b3292
  32. Shi J, Yang Z, Niu Y, Zhang W, Lin N, Li X, et al. Large thigh circumference is associated with lower blood pressure in overweight and obese individuals: a community-based study. Endocrine Connections. 2020;9(4):271-278. http://doi.org/10.1530/ec-19-0539
  33. Chen CL, Liu L, Huang JY, Yu YL, Shen G, Lo K, et al. Thigh circumference and risk of all-cause, cardiovascular and cerebrovascular mortality: a cohort study. Risk Management and Healthcare Policy. 2020;13:1977-1987. http://doi.org/10.2147/rmhp.S264435
  34. Miele EM, Headley SAE. The effects of chronic aerobic exercise on cardiovascular risk factors in persons with diabetes mellitus. Current Diabetes Reports. 2017;17(10):97. http://doi.org/10.1007/s11892-017-0927-7
  35. Lavin KM, Roberts BM, Fry CS, Moro T, Rasmussen BB, Bamman MM. The importance of resistance exercise training to combat neuromuscular aging. Physiology. 2019; 34(2):112-122. http://doi.org/10.1152/physiol.00044.2018
  36. Villareal DT, Aguirre L, Gurney AB, Waters DL, Sinacore DR, Colombo E, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. The New England Journal of Medicine. 2017;376(20):1943-1955. http://doi.org/10.1056/NEJMoa1616338
  37. Ho SS, Dhaliwal SS, Hills AP, Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health. 2012;12:704. http://doi.org/10.1186/1471-2458-12-704
  38. Kim SW, Jung WS, Park W, Park HY. Twelve weeks of combined resistance and aerobic exercise improves cardiometabolic biomarkers and enhances red blood cell hemorheological function in obese older men: a randomized controlled trial. International Journal of Environmental Research and Public Health. 2019;16(24). http://doi.org/10.3390/ijerph16245020
  39. Vella CA, Nelson MC, Unkart JT, Miljkovic I, Allison MA. Skeletal muscle area and density are associated with lipid and lipoprotein cholesterol levels: the multi-ethnic study of atherosclerosis. Journal of Clinical Lipidology. 2020;14(1):143-153. http://doi.org/10.1016/j.jacl.2020.01.002