DOI QR코드

DOI QR Code

Estimation of DNA Damage in Human Fibroblast Cell from Radiopharmaceuticals by using Monte Carlo Simulation

  • Received : 2023.12.06
  • Accepted : 2023.12.18
  • Published : 2023.12.30

Abstract

Modelling the damage to DNA molecules by ionizing radiation plays a crucial part in predicting the biological effects of any form of radiation therapy, but the creation of accurate damage models remains scientifically challenging. This study evaluated the frequency and severity of DNA strand breaks caused by direct and indirect radiation effects using the Geant4 DNA simulation toolkit. The DNA itself was represented as a continuous fractal Hilbert curve with a total length of approximately 6.4 Gbp, consisting of straight and twisted chromatin sections placed inside a simplified model of a human fibroblast cell. Using At-211 and Ac-225, both alpha-emitting radionuclides employed under assumption of radiopharmaceutical treatment, the results were compared to those from external irradiation with 1.5 MeV gamma rays. For each Gy of absorbed dose, the strand break yields were 103 ± 10 SSBs/Gbp and 15 ± 4 DSBs/Gbp for At-211, 96 ± 10 SSBs/Gbp and 15 ± 4 DSBs/Gbp for Ac-225, as well as 198 ± 14 SSBs/Gbp and 7 ± 3 DSBs/Gbp for the gamma rays. Thus, the radionuclides exhibited more than double the incidence of DSBs at the expense of SSBs compared to the gamma radiation. By demonstrating the feasibility of adapting the Geant4 DNA toolkit for in silico studies of the radiobiological effects of therapeutic radiopharmaceuticals at the DNA level, this is the first step towards the development of a comprehensive simulation model for determining the relative biological effectiveness of radiopharmaceuticals.

Keywords

Acknowledgement

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Government of Korea [Ministry of Science and ICT (MSIT)] under Grant 2021-M2E7A2079182. This study was also supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by the Ministry of Science and ICT (MSIT), Republic of Korea (Grant No. 50461-2024).

References

  1. Global Burden of Disease Collaborative Network. Global BurdenofDisease Study 2019 (GBD 2019). Seattle, United States: Institute for Health Metrics and Evaluation (IHME); 2020.
  2. Chatal JF, Hoefnagel CA. Radionuclide therapy. Lancet 1999; 354(9182):931-5.
  3. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 2020; 19:589-608.
  4. O'Donoghue J, Zanzonico P, Humm J, Kesner A. Dosimetry in Radiopharmaceutical Therapy. J Nucl Med 2022; 63(10):1467-74.
  5. Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Internat J Radiat Oncol Biol Phys 1982; 8:1981-97.
  6. INTERNATIONAL ATOMIC ENERGY AGENCY, Relative Biological Effectiveness in Ion Beam Therapy, Technical Reports Series No. 461, IAEA, Vienna (2008)
  7. Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, Kagadias GC. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers 2020; 12(4):799-821.
  8. Dingfelder M. Track-structure simulations for charged particles. Health Phys 2012; 103(5):590-5.
  9. Chatzipapas KP, Tran NH, Dordevic M, Zivkovic S, Zein S, Shin WG, Sakata D, Lampe N, Brown M.C. J, Ristic-Fira A, Petrovic I, Kyriakou I, Emfietzoglou D, Guatelli S, lncerti S. Simulation of DNA damage using Geant4-DNA: an overview of the "molecularDNA" example application. Prec Radiat Oncol 2023; 7:4-14.
  10. Ward JF, Evans JW, Limoli CL, Calabro-Jones PM. Radiation and hydrogen peroxide induced free radical damage to DNA. Br J Cancer Suppl 1987; 8:105-12.
  11. Agostinelli S, Allison J, Amako, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell'Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Cadena s JJG, Gonzalez I, Abril G G, Greeniaus G, Greiner G, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto R, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampen T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Freitas KM, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O'Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Salvo AD, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Tehrani ES, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus JP, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D. Geant4 - a simulation toolkit. 2003; 506(3):250-303.
  12. Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone GAP, Cooperman G, Cosmo G, Cuttone G, Daquino GG, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia M G, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch J P, Williams DC, Wright D, Yoshida H, Geant4 developments and applications. IEEE T Nucl Sci 2006; 53(1):270-8.
  13. Incerti S, Ivanchenko A, Kyriakou M, Mantero A, Moretto P, Tran, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, Francis Z, Villagrasa C, Baldacchino G, Gueye P, Capra R, Nieminen P, Zacharatou C. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med Phys 2018; 45:e722-39.
  14. Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z. The GEANT4-DNA project. Int J Model Simul SC 2010; 1:157-78.
  15. Kyriakou I, Sakata D, Tran HN, Perrot Y, Shin WG, Lampe N, Zein S, Bordage MC, Guatelli S, Villagrasa C, Emfietzoglou D, Incerti S. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers 2022; 14(1):35-60.
  16. Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry. Phys Med 2018; 48:135-45.
  17. Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA Part 2: electron and proton damage in a bacterial cell. Phys Med 2018; 48:146-55.
  18. Shin WG, Sakata D, Lampe N, Belov O, Tran NH, Petrovic I, Ristic-Fira A, Dordevic M, Bernal MA, Bordage MC, Francis Z, Kyriakou I, Perrot Y, Sasaki T, Villagrasa C, Guatelli S, Breton V, Emfietzoglou D, Incerti S. A Geant4-DNA evaluation of radiation-induced DNA damage on a human fibroblast. Cancers 2021; 13(19):4940-55.
  19. Shin WG, Sakata D, Lampe N, Belov O, Tran NH, Petrovic I, Ristic-Fira A, Dordevic M, Bernal MA, Bordage MC, Francis Z, Kyriakou I, Perrot Y, Sasaki T, Villagrasa C, Guatelli S, Breton V, Emfietzoglou D, Incerti S. Geant4-DNA simulation of the pre-chemical stage of water radiolysis and its impact on initial radiochemical yields. Phys Med 2021; 88:86-90.
  20. Tran HN, Ramos-Mendez J, Shin WG, Perrot Y, Faddegon B, Okada S, Karamitros M, Davidkova M, Stepan V, Incerti S, Villagrasa C. Assessment of DNA damage with an adapted independent reaction time approach implemented in Geant4-DNA for the simulation of diffusion-controlled reactions between radio-induced reactive species and a chromatin fiber. Med Phys 2021; 48(2):890-901.
  21. Ramos-Mendez J, Shin WG, Karamitros M, Dominguez-Kondo J, Tran NH, Incerti S, Villagrasa C, Perrot Y, Stepan V, Okada S, Moreno-Barbosa E, Faddegon B. Independent reaction times method in Geant4-DNA: Implementation and performance. Med Phys 2020; 47(11):5919-30.
  22. Chatzipapas K, Dordevic M, Zivkovic S, Tran NH, Lampe N, Sakata D. Geant4-DNA simulation of human cancer cells irradiation with helium ion beams. Phys Med 2023; 112:102613.
  23. Sakata D, Belov O, Bordage MC, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Petrovic I, Ristic-Fira A, Shin WG, Incerti S. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci Rep 2020; 10(1):20788.
  24. Nikjoo H, O'Neill P, Goodhead DT, Terrissol M. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol 1997; 71(5):467-83.
  25. Hsiao Y, Stewart RD. Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Phys Med Biol 2008; 53(1):233-44.
  26. Claesson AK, Stenerlow B, Jacobsson L, Elmroth K. Relative biological effectiveness of the alpha-particle emitter (211)At for double-strand break induction in human fibroblasts. Radiat Res 2007; 167(3):312-8.