DOI QR코드

DOI QR Code

Harmonic compensated individual-phase control of four-leg inverters for microgrid applications

  • Jin‑Sung Lee (Research and Development Center, Intech-FA Co., Ltd) ;
  • Sang‑Hyeon Lee (Department of Electrical and Computer Engineering, Ajou University) ;
  • In‑Ho Lee (Department of Electrical and Computer Engineering, Ajou University) ;
  • Sung‑Nam Ju (Research and Development Center, Intech-FA Co., Ltd) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2023.06.16
  • Accepted : 2023.08.31
  • Published : 2023.11.20

Abstract

In this paper, harmonic compensated individual-phase voltage control of four-leg inverters is proposed for microgrid applications. Individual-phase control, which is one of the promising voltage control methods of four-leg inverters, ensures robustness for high load unbalance rates. However, the odd harmonics generated by nonlinear loads and dead time deteriorate the quality of load voltages under single-phase control. The proposed method compensates for the odd harmonics included in the load voltages to improve the output power quality. In the proposed method, band-pass and all-pass filters are used to generate the virtual components for the individual-phase control. Additionally, the harmonics are compensated in the synchronous reference frame using a resonant controller, while the fundamental components are controlled by proportional-integral controllers. With the proposed method, the total harmonic distortion of the load voltages is maintained at a low level under unbalanced and nonlinear load conditions. The effectiveness of the proposed method is demonstrated through simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20206910100160).

References

  1. Park, S.-H., Sohn, Y.-H., Cho, G.-H.: SiC-based 4 MHz 10 kW ZVS inverter with fast resonance frequency tracking control for high-density plasma generators. IEEE Trans. Power Electron. 35(3), 3266-3275 (2020) https://doi.org/10.1109/TPEL.2019.2932056
  2. Lee, K.-M., Park, C.-W.: New fault detection method for low voltage DC microgrid with renewable energy sources. J. Electr. Eng. Technol. 17(4), 2151-2159 (2022) https://doi.org/10.1007/s42835-022-01043-0
  3. Machado, S.J.M., Silva, S.A.O., Monteiro, J.R.B.A., Sampaio, L.P., Oliveira, A.A., Jr.: Analysis of a multifunctional inverter active-filtering function influence on the small-signal stability of inverter-based islanded AC microgrids. IEEE Trans. Ind. Electron. 70(8), 8108-8117 (2023) https://doi.org/10.1109/TIE.2022.3222630
  4. Akhavan, A., Golestan, S., Vasquez, J.C., Guerrero, J.M.: Passivity enhancement of voltage-controlled inverters in grid-connected microgrids considering negative aspects of control delay and grid impedance variations. J. Power Electron. 9(6), 6637-6649 (2021) https://doi.org/10.1109/JESTPE.2021.3065671
  5. Ali, M.A., Barakat, M.M., Abokhalaf, M.M., Fadel, Y.H., Kandil, M., Rasmy, M.W., Ali, O.N., Besheer, A.H., Emara, H.M., Bahgat, A.: Micro-grid monitoring and supervision: web-based SCADA approach. J. Electr. Eng. Technol. 16(5), 2313-2331 (2021) https://doi.org/10.1007/s42835-021-00762-0
  6. Yuan, L., Xiu, C., Ma, X.: Sliding mode control strategy for microgrid inverter systems. J. Power Electron. 23(5), 821-831 (2023) https://doi.org/10.1007/s43236-022-00576-x
  7. Yu, Y., Qin, Y., Gong, H.: A fuzzy Q-learning algorithm for storage optimization in islanding microgrid. J. Electr. Eng. Technol. 16(5), 2343-2353 (2021) https://doi.org/10.1007/s42835-021-00769-7
  8. Sen, S., Kumar, V.: Microgrid control: a comprehensive survey. Annu. Rev. Control 45, 118-151 (2018) https://doi.org/10.1016/j.arcontrol.2018.04.012
  9. Han, Y., Ning, X., Yang, P., Xu, L.: Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled DC microgrids. IEEE Access 7, 149202-149223 (2019) https://doi.org/10.1109/ACCESS.2019.2946706
  10. Mohammed, S.A.Q., Rafaq, M.S., Choi, H.H., Jung, J.-W.: A robust adaptive PI voltage controller to eliminate impact of disturbances and distorted model parameters for 3-phase CVCF inverters. IEEE Trans. Ind. Inform. 16(4), 2168-2176 (2020) https://doi.org/10.1109/TII.2019.2891243
  11. Kim, J., Choi, H.H., Jung, J.-W.: MRAC-based voltage controller for three-phase CVCF inverters to attenuate parameter uncertainties under critical load conditions. IEEE Trans. Power Electron. 35(1), 1002-1013 (2020) https://doi.org/10.1109/TPEL.2019.2912393
  12. Tan, G., Wei, J., Zhao, W., Qi, L., Sun, X.: Application of three-dimensional unbalanced coordinate transformation to stand-alone four-leg voltage-source inverter. IEEE Trans. Power Electron. 37(10), 11686-11703 (2022) https://doi.org/10.1109/TPEL.2022.3173396
  13. Zhang, L., Yang, H., Tang, Y., Pou, J., Tolbert, L.M.: Decoupled modulation with common-mode load-voltage control for three-phase four-leg three-level inverter. IEEE Trans Ind. Electron. 69(8), 8594-8598 (2022) https://doi.org/10.1109/TIE.2021.3104597
  14. Roh, C., Kwak, S., Choi, S.: Three-phase three-level four-leg NPC converters with advanced model predictive control. J. Power Electron. 21(10), 1574-1584 (2021) https://doi.org/10.1007/s43236-021-00283-z
  15. Oggier, E., Oggier, G.G., Botteron, F., Garcia, G.O.: Closed-form harmonic compensation using resonant controllers applied to four-leg VSI. J. Power Electron. 9(6), 6637-6649 (2021)
  16. Lokesh, N., Mishra, M.K.: Design of a decoupled sliding mode control for four-leg distribution static compensator. IEEE Trans. Power Delivery. 37(6), 5014-5024 (2022) https://doi.org/10.1109/TPWRD.2022.3165942
  17. El-sotouhy, M.M., Mansour, A.A., Marei, M.I., Zaki, A.M.: Experimental verification for active power filter based four-leg inverter with SUI-PI controller. J. Electr. Eng. Technol. 16(5), 2543-2552 (2021) https://doi.org/10.1007/s42835-021-00755-z
  18. Han, B.-G., Kim, J.-M., Kim, K.-H., Shen, J., Rho, D.-S.: The single-phase voltage and power control algorithm of a 4-leg type CVCF inverter for an of-grid micro-grid system. Energies 15(9), 3353-3365 (2022) https://doi.org/10.3390/en15093353
  19. Tang, Z., Akin, B.: Suppression of dead-time distortion through revised repetitive controller in PMSM drives. IEEE Trans. Energy Convers. 32(3), 918-930 (2017)
  20. Gupta, R., Ghosh, A., Joshi, A.: Performance comparison of VSC-based shunt and series compensators used for load voltage control in distribution systems. IEEE Trans. Power Delivery. 26(1), 268-278 (2011) https://doi.org/10.1109/TPWRD.2010.2076341
  21. Hansen, S., Nielsen, P., Blaabjerg, F.: Harmonic cancellation by mixing nonlinear single-phase and three-phase loads. IEEE Trans. Ind. Appl. 36(1), 152-159 (2000) https://doi.org/10.1109/28.821810
  22. Khan, R.A., Ashraf, M.N., Choi, W.: A harmonic compensation method using a lock-in amplifier under non-sinusoidal grid conditions for single phase grid connected inverters. Energies 14(3), 597-613 (2021) https://doi.org/10.3390/en14030597