DOI QR코드

DOI QR Code

Sensorless initial position estimation strategy for PMa-SynRM drives based on dual rotating high-frequency signal injection

  • Liu Liu (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Pan Luo (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Junjie Zhao (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Yuechen Rui (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China)
  • Received : 2023.03.27
  • Accepted : 2023.09.15
  • Published : 2023.11.20

Abstract

The rotating high-frequency (RHF) signal injection method is widely adopted for the initial position estimation in sensorless permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) drives due to its simple implementation. However, the position estimation accuracy of the conventional method may be seriously deteriorated by the dead-zone effects of the inverter and the cross-saturation effects of the machine. Thus, to improve initial position estimation accuracy, a strategy to apply dual RHF signals is proposed in this paper. Different from the traditional solution, the proposed method sequentially injects dual RHF carrier voltages with the same frequencies but different amplitudes into the machine. Objective equations that consider the dead-zone and cross-coupling effects can be extracted from high-frequency response currents in turn. After the simple calculation, the initial position can be obtained directly and accurately, which effectively minimizes the influences of machine cross-saturation and inverter nonlinearities. The influence of the system delay on the rotor position estimation is also analyzed and deduced in detail. Finally, experimental results on a 5.5-kW PMa-SynRM indicate that the proposed method can achieve precise initial position estimation under any rotation position.

Keywords

References

  1. Foti, S., De Caro, S., Scimone, T., Testa, A., Tornello, L.D., Scelba, G., Cacciato, M.: Rotor position error compensation in sensorless synchronous reluctance motor drives. IEEE Trans. Power Electron. 37(4), 4442-4452 (2022) https://doi.org/10.1109/TPEL.2021.3122532
  2. Mao, Y.L., Yang, J.Q., Yin, D.J., Chen, Y.S.: Sensorless ipmsm control based on an extended nonlinear observer with rotational inertia adjustment and equivalent flux error compensation. J. Power Electron. 16(6), 2150-2161 (2016) https://doi.org/10.6113/JPE.2016.16.6.2150
  3. Hinkkanen, M., Saarakkala, S.E., Awan, H.A.A., Molsa, E., Tuovinen, T.: Observers for sensorless synchronous motor drives: framework for design and analysis. IEEE Trans. Ind. Appl. 54(6), 6090-6100 (2018) https://doi.org/10.1109/TIA.2018.2858753
  4. Lee, K.G., Lee, J.S., Lee, K.B.: Wide-range sensorless control for spmsm using an improved full-order flux observer. J. Power Electron. 15(3), 721-729 (2015) https://doi.org/10.6113/JPE.2015.15.3.721
  5. Guerrero, J.M., Leetmaa, M., Briz, F., Zamarron, A., Lorenz, R.D.: Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods. IEEE Trans. Ind. Appl. 41(2), 618-626 (2005) https://doi.org/10.1109/TIA.2005.844411
  6. Park, Y., Sul, S.: Implementation schemes to compensate for inverter nonlinearity based on trapezoidal voltage. IEEE Trans. Ind. Appl. 50(2), 1066-1073 (2014) https://doi.org/10.1109/TIA.2013.2272431
  7. Wang, J., Yan, J.H., Ying, Z.F.: Initial rotor position and inductance estimation of pmsms utilizing zero-current-clamping effect. J. Power Electron. 22(1), 50-60 (2022) https://doi.org/10.1007/s43236-021-00340-7
  8. Kwon, Y.C., Sul, S.K.: Reduction of injection voltage in signal injection sensorless drives using a capacitor-integrated inverter. IEEE Trans. Power Electron. 32(8), 6261-6274 (2017) https://doi.org/10.1109/TPEL.2016.2620259
  9. Kim, D., Kwon, Y.C., Sul, S.K., Kim, J.H., Yu, R.S.: Suppression of injection voltage disturbance for high-frequency squarewave injection sensorless drive with regulation of induced high-frequency current ripple. IEEE Trans. Ind. Appl. 52(1), 302-312 (2016) https://doi.org/10.1109/TIA.2015.2478887
  10. Hong, C.H., Lee, J., Lee, D.M.: Sensorless scheme for interior permanent magnet synchronous motors with a wide speed control range. J. Power Electron. 16(6), 2173-2181 (2016) https://doi.org/10.6113/JPE.2016.16.6.2173
  11. Yousef-Talouki, A., Pescetto, P., Pellegrino, G., Boldea, I.: Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines. IEEE Trans. Power Electron. 33(3), 2447-2457 (2018) https://doi.org/10.1109/TPEL.2017.2697209
  12. Guglielmi, P., Pastorelli, M., Vagati, A.: Impact of cross saturation in sensorless control of transverse-laminated synchronous reluctance motors. IEEE Trans. Ind. Electron. (1982) 53(2), 429-439 (2006) https://doi.org/10.1109/TIE.2006.870716
  13. Ferrari, M., Bianchi, N., Fornasiero, E.: Analysis of rotor saturation in synchronous reluctance and pm-assisted reluctance motors. IEEE Trans. Ind. Appl. 51(1), 169-177 (2015) https://doi.org/10.1109/TIA.2014.2326056
  14. Li, C., Wang, G., Zhang, G., Xu, D., Xiao, D.: Saliency-based sensorless control for synrm drives with suppression of position estimation error. IEEE Trans. Ind. Electron. 66(8), 5839-5849 (2019) https://doi.org/10.1109/TIE.2018.2874585
  15. Varatharajan, A., Pellegrino, G., Armando, E.: Signal-injection sensorless control of synchronous reluctance machines for overload operation. IEEE Trans. Power Electron. 37(5), 5874-5883 (2022) https://doi.org/10.1109/TPEL.2021.3130316
  16. Tuovinen, T., Hinkkanen, M.: Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 2(2), 181-189 (2014) https://doi.org/10.1109/JESTPE.2013.2294359
  17. Pescetto, P., Pellegrino, G.: Determination of pm flux linkage based on minimum saliency tracking for pm-syr machines without rotor movement. IEEE Trans. Ind. Appl. 56(5), 4924-4933 (2020) https://doi.org/10.1109/TIA.2020.3000710
  18. Kim, S.I., Im, J.H., Song, E.Y., Kim, R.Y.: A new rotor position estimation method of ipmsm using all-pass filter on high-frequency rotating voltage signal injection. IEEE Trans. Ind. Electron. 63(10), 6499-6509 (2016) https://doi.org/10.1109/TIE.2016.2592464
  19. Li, W.Z., Liu, J.L., Gong, C.: High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives. J. Power Electron. 22(5), 784-795 (2022) https://doi.org/10.1007/s43236-022-00401-5
  20. Tang, Q., Shen, A., Luo, X., Xu, J.: Ipmsm sensorless control by injecting bidirectional rotating hf carrier signals. IEEE Trans. Power Electron. 33(12), 10698-10707 (2018) https://doi.org/10.1109/TPEL.2018.2811126
  21. Wang, G., Xiao, D., Zhang, G., Li, C., Zhang, X., Xu, D.: Sensorless control scheme of ipmsms using hf orthogonal square-wave voltage injection into a stationary reference frame. IEEE Trans. Power Electron. 34(3), 2573-2584 (2019) https://doi.org/10.1109/TPEL.2018.2844347
  22. Ye, J., Huang, S., Liu, L., Li, L., Xu, J., Shen, A.: Accurate harmonic calculation for digital spwm of vsi with dead-time effect. IEEE Trans. Power Electron. 36(7), 7892-7902 (2021) https://doi.org/10.1109/TPEL.2020.3041632
  23. Kumar, M., Gupta, R.: Analysis of voltage and current for multicarrier based multilevel inverter (2014)
  24. Gerada, C., Padilla, J. A., Sumner, M., Raminosoa, T.: Loading effects on saliency based sensorless control of pmsms. IEEE (2009)
  25. Holtz, J.: Acquisition of position error and magnet polarity for sensorless control of pm synchronous machines. IEEE Trans. Ind. Appl. 44(4), 1172-1180 (2008) https://doi.org/10.1109/TIA.2008.921418
  26. Shuang, B., Zhu, Z.Q.: A novel sensorless initial position estimation and startup method. IEEE Trans. Ind. Electron. 68(4), 2964-2975 (2021) https://doi.org/10.1109/TIE.2020.2977551
  27. Kim, H., Huh, K.K., Lorenz, R.D., Jahns, T.M.: A novel method for initial rotor position estimation for ipm synchronous machine drives. IEEE Trans. Ind. Appl. 40(5), 1369-1378 (2004) https://doi.org/10.1109/TIA.2004.834091
  28. Gulyaeva, M., Anuchin, A., Aliamkin, D., Lashkevich, M.: Rotor position estimation using field current response to phase-shifted PWM for synchronous homopolar motor. In: 20th International Symposium on Power Electronics (Ee), Novi Sad, pp 1-5 (2019)
  29. Anuchin, A., Lashkevich, M., Aliamkin, D., Gulyaeva, M.: Self-sensing control of a synchronous homopolar machine using field current response from phase-shifted PWM. In: IEEE 10th International Symposium on Sensorless Control for Electrical Drives (SLED), Turin, pp 1-5 (2019)