DOI QR코드

DOI QR Code

Evaluation and classification of stator turn-to-turn faults using electrical equivalent circuits for surface permanent magnet brushless direct current motors

  • A. Infantraj (Department of Electrical and Electronics Engineering, Loyola-ICAM College of Engineering and Technology) ;
  • M. Senthil Kumaran (Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering)
  • Received : 2023.02.22
  • Accepted : 2023.06.02
  • Published : 2023.11.20

Abstract

Stator turn-to-turn faults occur due to improper loading, eccentricity in the rotor, and increases in the operating temperature. During the occurrence of a stator turn-to-turn fault, an abnormal temperature increase occurs, and if this state is left unattended for a long duration, it can lead to degradation of the permanent magnet. This paper presents an analytical modeling scheme for surface permanent magnet brushless DC motors for diagnosing and classifying stator turn-to-turn faults using SIMULINK® during non-stationary operating conditions. A significant increase in the stator current, back EMF, torque, and speed is observed. A current signature analysis is performed during non-stationary operating conditions using a fast Fourier transform method to identify the severity of the fault. Furthermore, a simple and efficient classification model is developed by selecting the best classifier among the decision trees, neural network, support vector machine, discriminant analysis, and ensemble classifier. A statistical evaluation of the current signal for fault feature extraction and ranking is performed based on minimum redundancy and maximum relevance, Chi-square test, Relief F, analysis of variance, and Kruskal-Wallis test. The dataset for classification is extracted from a Simulink analytical model. Neural network-based classifiers can classify faults precisely and rapidly with a minimum number of features.

Keywords

References

  1. Nandi, S., Toliyat, H.A., Li, X.: Condition monitoring and fault diagnosis of electrical motors-a review. IEEE Trans. Energy Convers. 20(4), 719-729 (2005). https://doi.org/10.1109/TEC.2005.847955 
  2. Gandhi, A., Corrigan, T., Parsa, L.: Recent advances in modeling and online detection of stator interturn faults in electrical motors. IEEE Trans. Ind. Electron. 58(5), 1564-1575 (2011). https://doi.org/10.1109/TIE.2010.2089937 
  3. Ahmed Farooq, J., Raminosoa, T., Djerdir, A., Miraoui, A.: Modelling and simulation of stator winding inter-turn faults in permanent magnet synchronous motors. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 27(4), 887-896 (2008). https://doi.org/10.1108/03321640810878306 
  4. Ebrahimi, B.M., Faiz, J.: Demagnetization fault diagnosis in surface mounted permanent magnet synchronous motors. IEEE Trans. Magn. 49(3), 1185-1192 (2013). https://doi.org/10.1109/TMAG.2012.2217978 
  5. Rajagopalan, S., Aller, J.M., Restrepo, J.A., Habetler, T.G., Harley, R.G.: Analytic-wavelet-ridge-based detection of dynamic eccentricity in brushless direct current (BLDC) motors functioning under dynamic operating conditions. IEEE Trans. Ind. Electron. 54(3), 1410-1419 (2007). https://doi.org/10.1109/TIE.2007.894699 
  6. Awadallah, M.A., Morcos, M.M., Gopalakrishnan, S., Nehl, T.W.: A neuro-fuzzy approach to automatic diagnosis and location of stator inter-turn faults in CSI-fed PM brushless DC motors. IEEE Trans. Energy Convers. 20(2), 253-259 (2005). https://doi.org/10.1109/TEC.2005.847976 
  7. Rajagopalan, S., le Roux, W., Habetler, T.G., Harley, R.G.: Dynamic eccentricity and demagnetized rotor magnet detection in trapezoidal fux (Brushless DC) motors operating under different load conditions. IEEE Trans. Power Electron. 22(5), 2061-2069 (2007). https://doi.org/10.1109/TPEL.2007.904183 
  8. Lee, Y.S., Kim, K.T., Hur, J.: Dynamic analysis algorithm of irreversible demagnetization of IPM-type brushless DC motor by stator turn fault. Trans. Korean Inst. Electr. Eng. 62(12), 1661-1667 (2013). https://doi.org/10.5370/KIEE.2013.62.12.1661 
  9. Ebrahimi, B.M., Javan Roshtkhari, M., Faiz, J., Khatami, S.V.: Advanced eccentricity fault recognition in permanent magnet synchronous motors using stator current signature analysis. IEEE Trans. Ind. Electron. 61(4), 2041-2052 (2014). https://doi.org/10.1109/tie.2013.2263777 
  10. Martin-Diaz, I., Morinigo-Sotelo, D., Duque-Perez, O., Romero-Troncoso, R.J.: An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions. IEEE Trans. Ind. Appl. 54(3), 2215-2224 (2018). https://doi.org/10.1109/TIA.2018.2801863 
  11. Kim, K.T., Park, J.K., Hur, J., Kim, B.W.: Comparison of the fault characteristics of IPM-type and SPM-type BLDC motors under inter-turn fault conditions using winding function theory. IEEE Trans. Ind. Appl. 50(2), 986-994 (2014). https://doi.org/10.1109/TIA.2013.2272911 
  12. Park, J.K., Jeong, C.L., Lee, S.T., Hur, J.: Early detection technique for stator winding inter-turn fault in BLDC motor using input impedance. IEEE Trans. Ind. Appl. 51(1), 240-247 (2015). https://doi.org/10.1109/TIA.2014.2330067 
  13. Park, J.K., Hur, J.: Detection of inter-turn and dynamic eccentricity faults using stator current frequency pattern in IPM-type BLDC motors. IEEE Trans. Ind. Electron. 63(3), 1771-1780 (2016). https://doi.org/10.1109/TIE.2015.2499162 
  14. Qi, Y., Zafarani, M., Akin, B., Fedigan, S.E.: Analysis and detection of inter-turn short-circuit fault through extended self-commissioning. IEEE Trans. Ind. Appl. 53(3), 2730-2739 (2017). https://doi.org/10.1109/TIA.2016.2626264 
  15. Moon, S., Jeong, H., Lee, H., Kim, S.W.: Interturn short fault diagnosis in a PMSM by voltage and current residual analysis with the faulty winding model. IEEE Trans. Energy Convers. 33(1), 190-198 (2018). https://doi.org/10.1109/TEC.2017.2726142 
  16. Usman, A., Rajpurohit, B.S.: Comprehensive analysis of demagnetization faults in BLDC motors using novel hybrid electrical equivalent circuit and numerical based approach. IEEE Access 7, 147542-147552 (2019). https://doi.org/10.1109/ACCESS.2019.2946694 
  17. Usman, A., Rajpurohit, B.S.: Detection and identification of stator inter-turn faults and demagnetization effects in hybrid analytical-numerical model of a BLDC motor using electromagnetic signatures. In: 2020 IEEE Texas Power and Energy Conference (TPEC). (2020). https://doi.org/10.1109/tpec48276.2020.9042583 
  18. Sun, X., Li, T., Tian, X., Zhu, J.: Fault-tolerant operation of a six-phase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors. IEEE Trans. Energy Convers. 37(1), 337-346 (2022). https://doi.org/10.1109/tec.2021.3109869 
  19. Hanke, S., Peitz, S., Wallscheid, O., Bocker, J., Dellnitz, M.: Finite-control-set model predictive control for a permanent magnet synchronous motor application with online least squares system identification. In: 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE). (2019). https://doi.org/10.1109/precede.2019.8753313 
  20. Sun, X., Li, T., Zhu, Z., Lei, G., Guo, Y., Zhu, J.: Speed sensorless model predictive current control based on finite position set for PMSHM drives. IEEE Trans. Transport. Electr. 7(4), 2743-2752 (2021). https://doi.org/10.1109/tte.2021.3081436 
  21. Asad, B., Vaimann, T., Belahcen, A., Kallaste, A., Rassolkin, A., Iqbal, M.N.: Modified winding function-based model of squirrel cage induction motor for fault diagnostics. IET Electr. Power Appl. 14(9), 1722-1734 (2020). https://doi.org/10.1049/iet-epa.2019.1002 
  22. Krause, P.C., Wasynczuk, O., Sudhof, S.D. (2002). Analysis of electric machinery and drive systems. https://doi.org/10.1109/9780470544167 
  23. Dutta, N., Kaliannan, P., Shanmugam, P.: Application of machine learning for inter turn fault detection in pumping system. Sci. Rep. 12(1), 1-18 (2022). https://doi.org/10.1038/s41598-022-16987-6 
  24. Lee, Y.: A stator turn fault detection method and a fault-tolerant operating strategy for interior PM synchronous motor drives in safety-critical applications. Doctoral dissertation, Georgia Institute of Technology. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=590ae70127c98f8f851415a1bef4f427fe24921 (2007). Accessed 22 Feb 2023 
  25. Alipoor, G., Mirbagheri, S.J., Moosavi, S.M.M., Cruz, S.M.A.: Incipient detection of stator inter-turn short-circuit faults in a doubly-fed induction generator using deep learning. IET Electr. Power Appl. 17(2), 256-267 (2023). https://doi.org/10.1049/elp2.12262