DOI QR코드

DOI QR Code

Chaotic ant colony algorithm-based frequency-optimized random switching frequency SVPWM control strategy

  • Siyan Zhang (School of Electrical and Electronic Engineering, Harbin University of Science and Technology) ;
  • Xudong Wang (School of Electrical and Electronic Engineering, Harbin University of Science and Technology) ;
  • Kai Zhou (School of Electrical and Electronic Engineering, Harbin University of Science and Technology) ;
  • Xuan Shao (School of Electrical and Electronic Engineering, Harbin University of Science and Technology) ;
  • Jinfeng Liu (School of Electrical and Electronic Engineering, Harbin University of Science and Technology)
  • Received : 2023.01.10
  • Accepted : 2023.06.05
  • Published : 2023.11.20

Abstract

To solve the problem where the space vector pulse width modulation (SVPWM) of a three-phase inverter produces large harmonic components near the switching frequency (fs) and its doubling frequency, a frequency-optimized random switching frequency SVPWM (FORSF-SVPWM) control strategy is proposed in this paper. In this strategy, the basic principle of the chaotic ant colony algorithm in path optimization is used to determine the optimized scheme of the switching frequency distribution in the FORSF-SVPWM. Research shows that the frequency sample formed by the sigmoid function curve in the switching frequency range can cause the energy that was originally concentrated on the switching frequency and its doubling frequency to be more evenly distributed in the whole frequency range. Moreover, the amplitude of each harmonic wave is shown to be suppressed. The proposed strategy reduces the high-frequency noise and conducted electromagnetic interference (EMI) existing in power switching circuits. Thus, this strategy is obviously better than the traditional random switching frequency SVPWM (RSF-SVPWM) algorithm with its approximately uniform frequency distribution. Simulation and experimental results show that this strategy can work well in the hardware platform of a three-phase inverter without changing the topology of the main circuit of the system. In addition, this strategy is easy to implement.

Keywords

References

  1. Yan, Q., Zhou, Z., Wu, M., Yuan, X.: A Simplified Analytical Algorithm in abc Coordinate for the Three-Level SVPWM. IEEE Trans. Power Electron. 36(4), 3622-3627 (2021) https://doi.org/10.1109/TPEL.2020.3027742
  2. Zhang, S., Wang, X., Gao, J., Wu, X., Liu, J.: SVPWM over-modulation region II control method based on the chaos ant colony algorithm. J. Electr. Eng. Technol. 16(4), 2131-2140 (2021) https://doi.org/10.1007/s42835-021-00764-y
  3. Chen, Y., Guo, X., Xue, J., Chen, Y.: Hybrid PWM modulation technology applied to three-level topology-based PMSMs. J. Power Electron. 19(1), 146-157 (2019)
  4. Kumar, A.-C.-B., Narayanan, G.: Variable switching frequency PWM technique for induction motor drive to spread acoustic noise spectrum with reduced current ripple. IEEE Trans. Ind. Appl. 52(5), 3927-3938 (2016) https://doi.org/10.1109/TIA.2016.2561259
  5. Lai, Y.-S., Chen, B.: New random PWM technique for a full-bridge DC/DC converter with harmonics intensity reduction and considering efficiency. IEEE Trans. Power Electron. 28(11), 5013-5023 (2013) https://doi.org/10.1109/TPEL.2013.2240393
  6. Khan, H., Miliani, E.-H., Drissi, K.-E.-K.: Discontinuous random space vector modulation for electric drives: a digital approach. IEEE Trans. Power Electron. 27(12), 4944-4951 (2012) https://doi.org/10.1109/TPEL.2012.2194511
  7. Muthukumar, P., Padmasuresh, L., Eswaramoorthy, K., Jeevananthan, S.: Critical analysis of random frequency inverted sine carrier PWM fortification for half-controlled bipolar three-phase inverters. J. Power Electron. 20(2), 479-491 (2020) https://doi.org/10.1007/s43236-020-00034-6
  8. Kim, K.-S., Jung, Y.-G., Lim, Y.-C.: A new hybrid random PWM scheme. IEEE Trans. Power Electron. 24(1), 192-200 (2009) https://doi.org/10.1109/TPEL.2008.2006613
  9. Chen, H.-C., Chang, Y.-C., Huang, C.-K.: Development of optimised carrier sequence in MCU-based random-frequency PWM. IET Electr. Power Appl. 1(1), 43-48 (2007) https://doi.org/10.1049/iet-epa:20060140
  10. Yenduri, P.-K., Rocca, A.-Z., Rao, A.-S., Naraghi, S., Flynn, M.-P., Gilbert, A.-C.: A low-power compressive sampling time-based analog-to-digital converter. IEEE Jour. Emer. Select. Top. Circu. Syste. 2(3), 502-515 (2012) https://doi.org/10.1109/JETCAS.2012.2221832
  11. Lee, K., Shen, G., Yao, W., Lu, Z.: Performance characterization of random pulse width modulation algorithms in industrial and commercial adjustable-speed drives. IEEE Trans. Ind. Appl. 53(2), 1078-1087 (2017) https://doi.org/10.1109/TIA.2016.2616407
  12. Zhang, W., Xu, Y., Ren, J., Su, J., Zou, J.: Synchronous random switching frequency modulation technique based on the carrier phase shift to reduce the PWM noise. IET Power Electron. 13(4), 892-897 (2020) https://doi.org/10.1049/iet-pel.2019.0642
  13. Lim, Y.-C., Jung, Y.-G., Oh, S.-Y., Kim, J.-G.: A two-phase separately randomized pulse position PWM (SRP-PWM) scheme with low switching noise characteristics over the entire modulation index. IEEE Trans. Power Electron. 27(1), 362-369 (2012) https://doi.org/10.1109/TPEL.2010.2087361
  14. Qi, C., Tu, P., Wang, P., Zagrodnik, M.-A.: Random nearest level modulation strategy of multilevel cascaded H-bridge inverters. IET Power Electron. 9(14), 2706-2713 (2016) https://doi.org/10.1049/iet-pel.2016.0154
  15. Pan, T., Wu, H., Fu, C., Wu, D.: Novel random pulse position modulation for three-phase four-leg inverters. Proc. Inst. Mech. Eng. Part I-J Syst Control Eng 232(5), 541-549 (2018) https://doi.org/10.1177/0959651818760110
  16. Qi, C., Chen, X., Qiu, Y.: Carrier-based randomized pulse position modulation of an indirect matrix converter for attenuating the harmonic peaks. IEEE Trans. Power Electron. 28(7), 3539-3548 (2013) https://doi.org/10.1109/TPEL.2012.2224140
  17. Bu, F., Liu, Q., Pu, T., Zhao, Y., Ma, B., Ma, C., Degano, M., Gerada, C.: Analysis and performance of five phase piecewise random switching frequency space vector pulse width modulation. IEEE Trans. Energy Convers. 36(3), 2339-2347 (2021) https://doi.org/10.1109/TEC.2020.3046835
  18. Peyghambari, A., Dastfan, A., Ahmadyfard, A.: Selective voltage noise cancellation in three-phase inverter using random SVPWM. IEEE Trans. Power Electron. 31(6), 4604-4610 (2016) https://doi.org/10.1109/TPEL.2015.2473001
  19. Bhattacharya, S., Mascarella, D., Joos, G., Moschopoulos, G.: Reduced switching random PWM technique for two-level inverters. Proc. IEEE Energy Conversion Congress and Exposition, 695-702 (2015).
  20. Lai, Y.-S., Chang, Y.-T., Chen, B.-Y.: Novel random-switching PWM technique with constant sampling frequency and constant inductor average current for digitally controlled converter. IEEE Trans. Ind. Electron. 60(8), 3126-3135 (2013) https://doi.org/10.1109/TIE.2012.2201436
  21. Shrivastava, Y., Sathiakumar, S., Agelidis, V.-G.: Analysis and verification of two-level random aperiodic PWM schemes for DC-DC converters. IEEE Trans. Power Electron. 24(9), 2138-2147 (2009) https://doi.org/10.1109/TPEL.2009.2021762
  22. Bu, F., Pu, T., Huang, W., Zhu, L.: Performance and evaluation of five-phase dual random SVPWM strategy with optimized probability density function. IEEE Trans. Ind. Electron. 66(5), 3323-3332 (2019) https://doi.org/10.1109/TIE.2018.2854570
  23. Han, G., Zhou, Z., Zhang, T., Wang, H., Liu, L., Peng, Y., Guizani, M.: Ant-colony-based complete-coverage path-planning algorithm for underwater gliders in ocean areas with thermoclines. IEEE Trans. Veh. Technol. 69(8), 8959-8971 (2020) https://doi.org/10.1109/TVT.2020.2998137