DOI QR코드

DOI QR Code

Output stability control method for electric vehicle DWPT systems based on interleaved there-level buck converters

  • Lianbin Cheng (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Jinhai Jiang (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Jianing Xu (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Zelun Wang (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Guo Wei (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Chunbo Zhu (School of Electrical Engineering and Automation, Harbin Institute of Technology)
  • Received : 2022.10.02
  • Accepted : 2023.06.14
  • Published : 2023.11.20

Abstract

With the development of wireless power transfer (WPT), dynamic wireless power transfer (DWPT) has become a key technology for solving the low driving range of electric vehicles. This study aims to alleviate the output fuctuation of the power supply rail of a bipolar transmitter during DWPT, and to meet the wide output voltage range requirement at the receiving end. Specifcally, a cascaded interleaved three-level buck converter is developed as a power topology at the receiving end to efectively reduce the electrical stress of the switching device. In addition, a control method that combines active disturbance rejection control and a disturbance observer is proposed to suppress the output fuctuation of the coupling coil at the receiving end and to improve the dynamic response speed, which efectively enhances the output stability of the DWPT system. In this paper, a 30 kW DWPT experimental platform is established to verify the superiority of the cascaded three-level buck converter and the efectiveness of the proposed control method. The proposed control method has a 40% higher fuctuation suppression capability when compared with the traditional control method.

Keywords

Acknowledgement

National Natural Science Foundation of China, No. 52007038, Jinhai Jiang.

References

  1. Cirimele, V., Diana, M., Freschi, F., Mitolo, M.: inductive power transfer for automotive applications: state-of-the-art and future trends. IEEE Trans. on Ind. Applicat. 54(5), 4069-4079 (2018) https://doi.org/10.1109/TIA.2018.2836098
  2. Ahmad, A., Alam, M.S., Chabaan, R.: A comprehen-sive review of wireless charging technologies for electric vehicles. IEEE Trans. Transp. Electrifcation. 4(1), 38-63 (2018) https://doi.org/10.1109/TTE.2017.2771619
  3. Zhang, Y., Kan, T., Yan, Z., Mao, Y., Wu, Z., Mi, C.C.: Modeling and analysis of series-none compensation for wireless power transfer systems with a strong coupling. IEEE Trans. Power Electron. 34(2), 1209-1215 (2019) https://doi.org/10.1109/TPEL.2018.2835307
  4. Bagchi, A.C., Kamineni, A., Zane, R.A., Carlson, R.: Review and comparative analysis of topologies and control methods in dynamic wireless charging of electric vehicles. IEEE. J. Emerg. Sel. Topics Power Electron. 9(4), 4947-4962 (2021) https://doi.org/10.1109/JESTPE.2021.3058968
  5. Shi, K., Tang, C., Long, H., Lv, X., Wang, Z., Li, X.: Power fuctuation suppression method for EV dynamic wireless charging system based on integrated magnetic coupler. IEEE Trans. Power Electron. 37(1), 1118-1131 (2022)
  6. Park, C., Lee, S., Jeong, S.Y., Cho, G.-H., Rim, C.T.: Uniform power I-type inductive power transfer system with DQ-power supply rails for on-line electric vehicles. IEEE Trans. Power Electron. 30(11), 6446-6455 (2015) https://doi.org/10.1109/TPEL.2015.2420372
  7. Cui, S., Wang, Z., Han, S., Zhu, C., Chan, C.C.: Analysis and design of multiphase receiver with reduction of output fuctuation for EV dynamic wireless charging system. IEEE Trans. Power Electron. 34(5), 4112-4124 (2019)
  8. Zhao, F., Jiang, J., Cui, S., Zhou, X., Zhu, C., Chan, C.C.: Research on bipolar nonsalient pole transmitter for high-power EV dynamic wireless power transfer system. IEEE Trans. Power Electron. 37(2), 2404-2412 (2022)
  9. Feng, H., Cai, T., Duan, S., Zhao, J., Zhang, X., Chen, C.: An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans. Ind. Electron. 63(10), 6591-6601 (2016) https://doi.org/10.1109/TIE.2016.2589922
  10. Wang, H., Pratik, U., Jovicic, A., Hasan, N., Pantic, Z.: Dynamic wireless charging of medium power and speed electric vehicles. IEEE T. Veh. Technol. 70(12), 12552-12566 (2021) https://doi.org/10.1109/TVT.2021.3122366
  11. Ong, A., Jayathuathnage, P.K.S., Cheong, J.H., Goh, W.L.: Transmitter pulsation control for dynamic wireless power transfer systems. IEEE Trans. Transp. Electrifcation. 3(2), 418-426 (2017) https://doi.org/10.1109/TTE.2017.2703173
  12. Alkasir, A., Abdollahi, S.E., Abdollahi, S.R., Wheeler, P.: Enhancement of dynamic wireless power transfer system by model predictive control. IET Power Electron. 15(1), 67-79 (2022) https://doi.org/10.1049/pel2.12213
  13. Liu, J., Liu, Z., Chen, W., Sun, X., Su, H.: An optimized coil array and passivity-based control for receiving side multilevel connected DC-DC converter of dynamic wireless charging. IEEE T. Veh. Technol. 71(4), 3715-3726 (2022) https://doi.org/10.1109/TVT.2022.3146636
  14. Song, S., Dong, S., Zhang, Q.: Receiver current-stress mitigation for a dynamic wireless charging system employing constant resistance control. IEEE Trans. Power Electron. 36(4), 3883-3893 (2021) https://doi.org/10.1109/TPEL.2020.3019493
  15. Kobayashi, D., Imura, T., Hori, Y.: Real-time coupling coefcient estimation and maximum efciency control on dynamic wireless power transfer for electric vehicles. Proc. 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW), 1-6 (2015)
  16. Yao, Y., Gao, S., Mai, J., Liu, X., Zhang, X., Xu, D.: A novel misalignment tolerant magnetic coupler for electric vehicle wireless charging. IEEE. J. Emerg. Sel. Top. Ind. Electron. 3(2), 219-229 (2022) https://doi.org/10.1109/JESTIE.2021.3051550
  17. Zhou, S., Chris Mi, C.: Multi-paralleled lcc reactive power compensation networks and their tuning method for electric vehicle dynamic wireless charging. IEEE Trans. Ind. Electron. 63(10), 6546-6556 (2016) https://doi.org/10.1109/TIE.2015.2512236
  18. Wang, Z., Cui, S., Han, S., Song, K., Zhu, C., Matveevich, M.I., Yurievich, O.S.: A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles. IEEE T. Veh. Technol. 67(1), 124-133 (2018)  https://doi.org/10.1109/TVT.2017.2776348