DOI QR코드

DOI QR Code

Single-loop order reduction output voltage control with model-free filtering for DC/DC converters

  • Won Seok Jung (Department of Electrical and Computer Engineering, Ajou University) ;
  • Seok‑Kyoon Kim (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2023.04.17
  • Accepted : 2023.08.10
  • Published : 2023.11.20

Abstract

This study devises an advanced single-loop output voltage control method for DC/DC converters incorporating a model-free filter, active damping, and nonlinearly designed feedback terms. The resultant output-feedback controller ensures the order reduction property and reduces both the dependence level of the system model and the number of feedback loops. There are two main features that differentiate this from extant results. First, a model-free first-order pole-zero cancellation (PZC) filter extracts the time derivative component from the output voltage measurement according to the first-order dynamics by the order reduction property without any converter model information. Second, an active damping controller forming a modified proportional-integral-derivative structure tracks the output voltage to its desired trajectory along the first-order low-pass filter dynamics by the order reduction property from the PZC, which is independent of the current feedback. Experimental evidence obtained from an actual feedback system adopting a 3-kW prototype DC/DC converter validates the effectiveness of the proposed technique, which demonstrates the capability of the current sensor fault tolerance.

Keywords

Acknowledgement

This research was supported in part by Korea Electric Power Corporation (Grant number : R21XO01-113) and was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. NRF-2021R1C1C1004380).

References

  1. Chu, E., Wang, Z., Kang, Y.: Analysis and implementation of passive soft switching Snubber for PWM inverters. J. Power Electron. 23(1), 48-57 (2023)  https://doi.org/10.1007/s43236-022-00520-z
  2. Jeong, H.I., Kim, S.H.: Expansion of reconstruction areas for current measurement using three shunt resistors in three leg two-phase inverters. J. Power Electron. 22(12), 2048-2055 (2022)  https://doi.org/10.1007/s43236-022-00534-7
  3. Tang, Y., Rong, X., Kan, J., Zhang, Y., Jiang, L.: Simple symmetric switched inductor high step-down converter. J. Power Electron. 22(10), 1639-1651 (2022)  https://doi.org/10.1007/s43236-022-00475-1
  4. Hakami, S.S., Lee, K.-B.: Proper flying capacitor selection for performance enhancement of five-level hybrid active neutral-point-clamped inverters. J. Power Electron. 22(10), 1687-1698 (2022)  https://doi.org/10.1007/s43236-022-00512-z
  5. Cha, J.-Y., Lee, E.-J., Han, B., Lee, K.-B., Han, B.-M.: New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current. J. Power Electron. 22(11), 1836-1847 (2022)  https://doi.org/10.1007/s43236-022-00511-0
  6. Al-kaf, H., Lee, K.-B.: Robust hybrid current controller for permanent-magnet synchronous motors. J. Electr. Eng. Technol. 18, 1863-1872 (2023)  https://doi.org/10.1007/s42835-023-01383-5
  7. Kang, H.H., Jo, H.R., Lee, K.-B.: Analysis of LCL-filter performance in three-level full SiC NPC inverters with inductor core materials. J. Electr. Eng. Technol. 17, 3427-3434 (2022) 
  8. Halabi, L.M., Alsofyani, I.M., Lee, K.-B.: Detection of open-circuit faults in multi-level hybrid active neutral point clamped inverters. J. Electr. Eng. Technol. 17, 2299-2307 (2022)  https://doi.org/10.1007/s42835-022-01060-z
  9. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics, 2nd edn. Springer-Verlag, New York (2001) 
  10. Kapat, S., Patra, A.: A current-controlled tristate boost converter with improved performance through RHP zero elimination. IEEE Trans. Power Electron. 24(3), 776-786 (2009)  https://doi.org/10.1109/TPEL.2008.2008994
  11. Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F.: Control in power electronics-selected problems. Academic Press, Cambridge (2002) 
  12. Olalla, C., Leyva, R., Queinnec, I., Maksimovic, D.: Robust gain-scheduled control of switched-mode DC-DC converters. IEEE Trans. Power Electron. 27(6), 3006-3019 (2012)  https://doi.org/10.1109/TPEL.2011.2178271
  13. Xue, R., Li, G., Tong, H., Chen, Y.: Adaptive active damping method of grid-connected inverter based on model predictive control in weak grid. J. Power Electron. 22(7), 1100-1111 (2022)  https://doi.org/10.1007/s43236-022-00419-9
  14. Jithin, S., Rajeev, T.: Novel adaptive power management strategy for hybrid AC/DC microgrids with hybrid energy storage systems. J. Power Electron. 22, 2056-2068 (2022)  https://doi.org/10.1007/s43236-022-00506-x
  15. Geng, Y., Pang, H., Liu, X.: State-of-charge estimation for lithium-ion battery based on PNGV model and particle filter algorithm J. . Power Electron. 22(7), 1154-1164 (2022)  https://doi.org/10.1007/s43236-022-00422-0
  16. Zhang, Q., Min, R., Tong, Q., Zou, X., Liu, Z., Shen, A.: Sensorless predictive current controlled DC-DC converter with a self-correction differential current observer. IEEE. Trans. Ind. Electron. 61(12), 6747-6757 (2014)  https://doi.org/10.1109/TIE.2014.2314062
  17. Bibian, S., Jin, H.: High performance predictive dead-beat digital controller for DC power supplies. IEEE Trans. Power Electron. 17(3), 420-427 (2002)  https://doi.org/10.1109/TPEL.2002.1004250
  18. Oucheriah, S., Guo, L.: PWM-based adaptive sliding-mode control for boost DC/DC converters. IEEE. Trans. Ind. Electron. 60(8), 3291-3294 (2013)  https://doi.org/10.1109/TIE.2012.2203769
  19. Wang, Y.-X., Yu, D.-H., Kim, Y.-B.: Robust time-delay control for the DC/DC boost converter. IEEE Trans. Ind. Electron. 61(9), 4829-4837 (2014)  https://doi.org/10.1109/TIE.2013.2290764
  20. He, J., Zhang, X.: An ellipse-optimized composite backstepping control strategy for a point-of-load inverter under load disturbance in the shipboard power system. IEEE Open J. Power Electron. 1, 420-430 (2020)  https://doi.org/10.1109/OJPEL.2020.3016942
  21. Linares-Flores, J., Mendez, A.H., Garcia-Rodriguez, C., Sira-Ramirez, H.: Robust nonlinear adaptive control of a boost converter via algebraic parameter identification. IEEE. Trans. Ind. Electron. 61(8), 4105-4114 (2014) 
  22. Hassan, M.A., Li, E., Li, X., Li, T., Duan, C., Chi, S.: Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems. IEEE J. Sel. Top. Power Electron. 7(3), 2029-2040 (2019)  https://doi.org/10.1109/JESTPE.2018.2874449
  23. Kim, S.-K., Lee, K.-B.: Robust feedback-linearizing output voltage regulator for DC/DC boost converter. IEEE Trans. Ind. Electron. 62(11), 7127-7135 (2015)  https://doi.org/10.1109/TIE.2015.2443102
  24. Theunisse, T.A.F., Chai, J., Sanfelice, R.G., Heemels, W.P.M.H.: Robust global stabilization of the DC-DC boost converter via hybrid control. IEEE Trans. Circuits Syst. I Regul. Pap. 62(4), 1052-1061 (2015)  https://doi.org/10.1109/TCSI.2015.2413154
  25. Yang, J., Wu, B., Li, S., Yu, X.: Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations. IEEE Trans. Circuits Syst. I Regul. Pap. 63(4), 551-560 (2016)  https://doi.org/10.1109/TCSI.2016.2529238
  26. Xu, Q., Zhang, C., Wen, C., Wang, P.: A novel composite nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Trans. Smart Grid 10(1), 752-761 (2019)  https://doi.org/10.1109/TSG.2017.2751755
  27. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083-1095 (2016)  https://doi.org/10.1109/TIE.2015.2478397
  28. Kim, S.-K.: Output voltage-tracking controller with performance recovery property for DC/DC boost converters. IEEE Trans. Control Syst. Technol. 27(3), 1301-1307 (2018)  https://doi.org/10.1109/TCST.2018.2806366
  29. Kim, S.-K., Ahn, C.K.: Nonlinear tracking controller for DC/DC boost converter voltage control applications via energy-shaping and invariant dynamic surface approach. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1855-1859 (2019) 
  30. Kim, S.-K., Ahn, C.K.: Self-tuning proportional-type performance recovery property output voltage-tracking controller for DC/DC boost converter. IEEE Trans. Ind. Electron. 66(4), 3167-3175 (2019)  https://doi.org/10.1109/TIE.2018.2849982
  31. Lim, S., Kim, S.-K., Kim, Y.: Active damping injection output voltage control with dynamic current cut-of frequency for DC/DC buck converters. Energies 14(20), 6848 (2021) 
  32. Kim, S.-K., Kim, K.-C., Ahn, C.K.: Output-voltage-tracking control for buck converters using variable convergence rate mechanism without current feedback. IEEE Trans. Ind. Electron. 69(3), 2938-2946 (2022)