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TRANSVERSAL LIGHTLIKE SUBMERSIONS FROM

INDEFINITE SASAKIAN MANIFOLDS ONTO

LIGHTLIKE MANIFOLDS

Shiv Sharma Shukla and Vipul Singh

Abstract. In this paper, we introduce and study two new classes of
lightlike submersions, called radical transversal and transversal lightlike

submersions between an indefinite Sasakian manifold and a lightlike man-

ifold. We give examples and investigate the geometry of distributions
involved in the definitions of these lightlike submersions. We also study

radical transversal and transversal lightlike submersions from an indef-
inite Sasakian manifold onto a lightlike manifold with totally contact

umbilical fibers.

1. Introduction

In 1966, O’Neill [14] initiated the study of Riemannian submersions and
Gray [8] further continued it. Let π : (M1, g1) → (M2, g2) be a smooth map,
where (M1, g1) and (M2, g2) are Riemannian manifolds. Then π is called a
Riemannian submersion if π has maximal rank and π⋆ preserves the length of
horizontal vectors. In [2], Chinea studied almost contact metric submersions
between manifolds equipped with different structures. Most of the research on
Riemannian submersions can be found in the book [7]. In [20], Sahin introduced
slant submersions from almost Hermitian manifolds onto Riemannian manifolds
as a generalization of almost Hermitian and anti-invariant submersions. Follow-
ing this research, Küpeli Erken and Murathan [13] studied slant Riemannian
submersions from Sasakian manifolds. In [18], Sahin introduced screen con-
formal lightlike submersions from lightlike manifolds onto semi-Riemannian
manifolds.

On the other hand, it is known that when M1 and M2 are Riemannian man-
ifolds, then fibers of π are Riemannian manifolds. But when M1 and M2 are
semi-Riemannian manifolds, then the fibers of π may not be semi-Riemannian.
In view of this fact, O’Neill [15] introduced the notion of semi-Riemannian
submersions between semi-Riemannian manifolds, and Sahin [19] introduced
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screen lightlike submersions from lightlike manifolds onto semi-Riemannian
manifolds. Also, Sahin and Gündüzalp [21] studied lightlike submersions from
semi-Riemannian manifolds onto lightlike manifolds. Some recent studies on
the geometry of lightlike submersions can be seen in ([10–12, 16, 17, 22]). The
geometry of totally umbilical lightlike submanifolds of semi-Riemannian man-
ifolds was studied by Duggal and Jin [4]. Radical transversal and transversal
lightlike submanifolds of indefinite Sasakian manifolds were defined and studied
by Yildirim and Sahin [25]. They also studied totally contact umbilical radical
transversal and transversal lightlike submanifolds of indefinite Sasakian man-
ifolds. Later, Wang and Liu [24] introduced generalized transversal lightlike
submanifolds of indefinite Sasakian manifolds. The above theories motivated
us to study some new classes of lightlike submersions. In the present paper, we
introduce the notions of transversal and radical transversal lightlike submer-
sions from indefinite Sasakian manifolds onto lightlike manifolds. We also study
radical transversal and transversal lightlike submersions between an indefinite
Sasakian manifold and a lightlike manifold with totally contact umbilical fibers.
The paper is organized as follows. In Section 2, we collect basic definitions and
formulae as needed for this paper. In Section 3, we define radical transversal
lightlike submersions, provide two examples and discuss the integrability and
geodesic foliations of distributions on a fiber of such lightlike submersions. We
also prove a necessary condition for the induced connection to be a metric con-
nection. In Section 4, we study the geometry of radical transversal lightlike
submersions with totally contact umbilical fibers. We also obtain an existence
(non-existence) theorem for radical transversal lightlike submersions from in-
definite Sasakian space forms with totally contact umbilical fibers. In Section
5, we introduce transversal lightlike submersions, give two examples and study
the geometry of distributions.

2. Preliminaries

In this section, we recall several definitions and results which will be required
throughout the paper.

A smooth semi-Riemannian manifold (M, g) of dimension 2m+ 1 is said to
have an almost contact structure (ϕ, ξ, η) if it carries a (1, 1) tensor field ϕ, a
vector field ξ called characteristic vector field and a 1-form η on M , satisfying

(1) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

where I denotes the identity tensor.
If a semi-Riemannian manifold (M, g) has an almost contact structure sat-

isfying

(2) g(ϕX, ϕY ) = g(X,Y )− ϵη(X)η(Y ), ∀X,Y ∈ Γ(TM),

then (ϕ, ξ, η, g) is called an (ϵ)-almost contact metric structure on M [6, 23],
where ϵ = −1 or 1 according as ξ is timelike or spacelike. From (1) and (2), we
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get

(3) g(ξ, ξ) = ϵ, η(X) = ϵg(X, ξ), g(X,ϕY ) + g(ϕX, Y ) = 0.

An (ϵ)-almost contact metric structure (ϕ, ξ, η, g) on M is an indefinite
Sasakian structure if and only if

(4) (∇Xϕ)Y = g(X,Y )ξ − ϵη(Y )X

for all X,Y ∈ Γ(TM), where ∇ denotes the Riemannian connection for g
[6, Theorem 7.1.6].

A semi-Riemannian manifold M equipped with an indefinite Sasakian struc-
ture (ϕ, ξ, η, g) is called an indefinite Sasakian manifold and it is denoted by
(M,ϕ, ξ, η, g). Setting Y = ξ in (4), we get

(5) ∇Xξ = −ϵϕX, ∀X ∈ Γ(TM).

In this paper, we assume that the characteristic vector field ξ is spacelike.

Example 2.1 ([5]). Let (R2n+1
2q , g) be a semi-Riemannian manifold with its

usual contact form

η =
1

2

(
dz −

n∑
i=1

yidxi

)
.

The characteristics vector field ξ is given by 2 ∂
∂z and its semi-Riemannian

metric g and tensor field ϕ are given by

g = η ⊗ η +
1

4

(
−

q∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi +

n∑
i=q+1

dxi ⊗ dxi + dyi ⊗ dyi

)
,

ϕ

(
n∑

i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

)
=

n∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)
+

n∑
i=1

Yiyi
∂

∂z
,

where (xi, yi, z) (i = 1, 2, . . . , n) are the Cartesian coordinates on R2n+1
2q . This

gives a contact metric structure on R2n+1.
Now, it can be proved that (R2n+1

2q , ϕ, ξ, η, g) is an indefinite Sasakian man-

ifold. The vector fields Ei = 2 ∂
∂yi

, En+i = 2
(

∂
∂xi

+ yi
∂
∂z

)
and ξ form a ϕ-basis

for the contact metric structure.

Let (M, g) be a realm-dimensional smooth semi-Riemannian manifold. Then
Rad TpM = {V ∈ TpM : g(V,X) = 0, X ∈ TpM} is a subspace of TpM called
the radical subspace with respect to g. Suppose dim(RadTpM) = r. Then the
mapping Rad TM : p ∈ M → Rad TpM is said to be the radical distribution
of rank r on M . The manifold M is said to be an r-lightlike manifold [3] if
r > 0.

Let f : (M1, g1) → (M2, g2) be a smooth submersion from a semi-Riemannian
manifold M1 onto an r-lightlike manifold M2. Then kernel of f∗ at p ∈ M1 and
its orthogonal complement are given by Kerf∗p = {X ∈ TpM1 : f∗pX = 0},
and (Kerf∗p)

⊥ = {Y ∈ TpM1 : g1(Y,X) = 0, X ∈ Kerf∗p}, respectively. As
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TpM1 is a semi-Riemannian vector space, Kerf∗ may not be complementary to
(Kerf∗)

⊥. We now consider the case when ∆p = Kerf∗p ∩ (Kerf∗p)
⊥ ̸= {0}

with 0 < dim∆ < min{dim(Kerf∗),dim(Kerf∗)
⊥}, then ∆ and Kerf∗ are

radical and lightlike distributions on f−1(x), respectively. Thus, there exists an
orthogonal complementary distribution to ∆ in Kerf∗ which is non-degenerate
and we denote it by S(Kerf∗). Therefore we haveKerf∗ = ∆ ⊥ S(Kerf∗). Us-
ing the last reasoning again for (Kerf∗)

⊥, we get (Kerf∗)
⊥ = ∆ ⊥ S(Kerf∗)

⊥,
where S(Kerf∗)

⊥ is a complementary distribution to ∆ in (Kerf∗)
⊥.

Let {Vi} be any local basis of ∆. Then there exists a local null frame {Ni}
of smooth sections with values in the orthogonal complement of S(Kerf∗)

⊥

in (S(Kerf∗))
⊥ satisfying g1(Vi, Nj) = δij and g1(Ni, Nj) = 0. The vector

bundle locally spanned by N1, N2,. . . , Nr is called a lightlike transversal vector
bundle and it is denoted by ltr(Kerf∗) ([3, page 144]). Consider the vector
bundle tr(Kerf∗) = ltr(Kerf∗) ⊥ S(Kerf∗)

⊥, which is complementary (but
not orthogonal) vector bundle to Kerf∗ in TM1|f−1(x). Then we get

TM1|f−1(x) = Kerf∗ ⊕ tr(Kerf∗),

TM1|f−1(x) = S(Kerf∗) ⊥ [∆⊕ ltr(Kerf∗)] ⊥ S(Kerf∗)
⊥.

It should be noted that ltr(Kerf∗) and Kerf∗ are not orthogonal to each
other. Next, we will denote V = Kerf∗, the vertical space of TpM1 and H =
tr(Kerf∗), the horizontal space. Therefore we get

TM1 = H⊕ V.
Also, we have Vp = Tpf

−1(x), where p ∈ f−1(x).

Definition ([21]). A submersion f : M1 → M2 from a semi-Riemannian man-
ifold (M1, g1) onto an r-lightlike manifold (M2, g2) is called an r-lightlike sub-
mersion if

(a) dim∆ = dim{(Kerf∗) ∩ (Kerf∗)
⊥} = r, 0 < r < min{dim(Kerf∗),

dim(Kerf∗)
⊥}.

(b) f∗ preserves the length of horizontal vectors, i.e., g1(X,Y ) = g2(f∗X,
f∗Y ) for X,Y ∈ ΓH.

We now have the following particular cases:

(i) If dim∆ = dim(Kerf∗) < dim(Kerf∗)
⊥, then we get V = ∆ and

H = S(Kerf∗)
⊥ ⊥ ltr(Kerf∗) and f is called an isotropic submersion.

(ii) If dim∆ = dim(Kerf∗)
⊥ < dim(Kerf∗), then we have V = S(Kerf∗)

⊥ ∆ and H = ltr(Kerf∗) and f is called a co-isotropic submersion.
(iii) If dim∆ = dim(Kerf∗)

⊥ = dim(Kerf∗), then we get V = ∆ and
H = ltr(Kerf∗) and f is called a totally lightlike submersion.

As we know, the geometry of Riemannian submersions is characterized by
O’Neill’s tensors T and A. Therefore, Sahin and Gündüzalp [21] defined these
tensors for a lightlike submersion as

(6) TXY = h∇νXνY + ν∇νXhY, AXY = ν∇hXhY + h∇hXνY,
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where h : TM1 → H and ν : TM1 → V denote the natural projections and ∇
be the Levi-Civita connection of g1.

We now study the induced geometric objects on a fiber of lightlike sub-
mersions. Let f : (M1, g1) → (M2, g2) be a lightlike submersion from an
(m + n)-dimensional semi-Riemannian manifold M1 onto an n-dimensional
lightlike manifold M2. Then by definition, Kerf∗ is an m-dimensional lightlike
distribution on f−1(x). Also, we denote the induced metric on f−1(x) by ĝ.
Then for any U, V ∈ Γ(Kerf∗) and X ∈ Γ(tr(Kerf∗)), using (6) we have

∇UV = ∇̂UV + TUV,(7)

∇UX = TUX +∇t
UX,(8)

where ∇̂UV = ν∇UV and ∇t
UX = h∇UX. Further we note that {∇̂UV, TUX}

and {TUV,∇t
UX} belongs to Γ(Kerf∗) and Γ(tr(Kerf∗)), respectively. Here

∇̂ and ∇t are linear connections on f−1(x) and tr(Kerf∗), respectively.
Let S(Kerf∗)

⊥ ̸= 0, that is, f is either an r-lightlike submersion or isotropic
submersion. Next, we denote the projection of tr(Kerf∗) on ltr(Kerf∗) and
S(Kerf∗)

⊥ by L and S, respectively. Then (7) and (8) take the following form

∇UV = ∇̂UV + T l
UV + T s

UV,(9)

∇UX = Dl
UX +Ds

UX + TUX,(10)

where T l
UV = L(TUV ), T s

UV = S(TUV ) and Dl
UX = L(∇t

UX), Ds
UX =

S(∇t
UX). T l and T s are called the lightlike second fundamental form and

the screen second fundamental form of a fiber of f , respectively. We also note
that the differential operators Dl and Ds define two Otsuki connections on
tr(Kerf∗) with respect to the vector bundle morphism L and S, respectively.
Now, for any U ∈ Γ(Kerf∗) we define the following differential operators

(11) ∇l
U : Γ(ltr(Kerf∗)) → Γ(ltr(Kerf∗));∇l

U (LX) = Dl
U (LX),

and

(12) ∇s
U : Γ(S(Kerf∗)

⊥) → Γ(S(Kerf∗)
⊥);∇s

U (SX) = Ds
U (SX),

where X ∈ Γ(tr(Kerf∗)). By a simple calculation, it follows that both ∇l and
∇s are linear connections on ltr(Kerf∗) and S(Kerf⊥

∗ ), respectively. These
connections are called the lightlike and the screen transversal connection on
f−1(x).

Further, we define mappings

(13) Dl : Γ(Kerf∗)×Γ(S(Kerf∗)
⊥) → Γ(ltr(Kerf∗));Dl(U, SX) = Dl

U (SX)

and

(14) Ds : Γ(Kerf∗)×Γ(ltr(Kerf∗))→Γ(S(Kerf∗)
⊥) : Ds(U,LX)=Ds

U (LX),

where U ∈ Γ(Kerf∗) and X ∈ Γ(tr(Kerf∗)). Now using (10)-(14), we get

(15) ∇UX = TUX +∇l
ULX +∇s

USX +Dl(U, SX) +Ds(U,LX).
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In particular, when X = N ∈ Γ(ltr(Kerf∗)) and X = W ∈ Γ(S(Kerf∗)
⊥)

then from (15), we obtain

(16) ∇UN = TUN +∇l
UN +Ds(U,N),

and

(17) ∇UW = TUW +∇s
UW +Dl(U,W ).

Now using (9), (17), (16) and metric connection ∇, we get

g1(T s
UV,W ) + g1(V,Dl(U,W ) + ĝ(TUW,V ) = 0,(18)

g1(Ds(U,N),W ) + g1(N, TUW ) = 0.(19)

Suppose S(Kerf∗) ̸= 0 and σ denotes the projection of Kerf∗ on S(Kerf∗).
Then for U, V ∈ Γ(Kerf∗) and Z ∈ Γ(∆) we have

∇̂UσV = ∇∗
UσV + T ∗

UσV,(20)

∇̂UZ = T ∗
UZ +∇∗t

U Z,(21)

where {∇∗
UσV, T ∗

UZ} and {T ∗
UσV,∇∗t

U Z} belongs to Γ(S(Kerf∗)) and Γ(∆), re-
spectively. Here∇∗ and∇∗t are induced metric linear connections on S(Kerf∗)
and ∆, respectively. From (9), (21), (16) and (20) we obtain

g1(T l
UσV, Z) + ĝ(σV, T ∗

UZ) = 0,(22)

g1(T ∗
UσV,N) + ĝ(TUN, σV ) = 0,(23)

g1(T l
UZ,Z) = 0, T ∗

ZZ = 0,(24)

where U, V ∈ Γ(Kerf∗), Z ∈ Γ(∆) and N ∈ Γ(ltr(Kerf∗)).
As ∇ is a metric connection on M1, using (9) we get

(25) (∇̂U ĝ)(V,W ) = g1(T l
UV,W ) + g1(T l

UW,V ).

Finally, we obtain the Gauss equation for fibers of an r-lightlike submersion.
By using (11) and (12), we define the following covariant derivatives

(∇UT l)(V,W ) = ∇l
UT l

V W − T l
∇̂UV

W − T l
V ∇̂UW,(26)

(∇UT s)(V,W ) = ∇s
UT s

V W − T s
∇̂UV

W − T s
V ∇̂UW,(27)

for any U, V,W ∈ Γ(Kerf∗). Let R and R̂ denote the curvature tensors of ∇
and ∇̂, respectively. Then by using (9), (16), (17), (25) and (26 ), we derive

R(U, V )W = R̂(U, V )W + TUT l
V W − TV T l

UW + TUT s
V W

− TV T s
UW + (∇UT l)(V,W )− (∇V T l)(U,W )

+Dl(U, T s
V W )−Dl(V, T s

UW ) + (∇UT s)(V,W )

− (∇V T s)(U,W ) +Ds(U, T l
V W )−Ds(V, T l

UW )(28)

for U, V,W ∈ Γ(Kerf∗).
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3. Radical transversal lightlike submersions

In this section, we introduce radical transversal lightlike submersions from
indefinite Sasakian manifolds onto lightlike manifolds such that the structure
vector field ξ is tangent to fiber. Also, we provide examples and study the
geometry of such lightlike submersions.

Definition. Let (M1, ϕ, ξ, η, g1) be an indefinite Sasakian manifold and (M2, g2)
be a lightlike manifold. Suppose that f : (M1, ϕ, ξ, η, g1) → (M2, g2) is a light-
like submersion with the characteristic vector field ξ tangent to f−1(x), i.e., ξ
belongs to S(Kerf∗). Then, f is called a radical transversal lightlike submer-
sion if

(i) ϕ(∆) = ltr(Kerf∗),
(ii) there exists a non-degenerate subbundle D of S(Kerf∗) such that

ϕ(D) = D, where S(Kerf∗) = D ⊥ ⟨ξ⟩.

A radical transversal lightlike submersion is said to be proper if D ≠ 0. Now,
we construct some examples of proper radical transversal lightlike submersions.

Example 3.1. Consider an indefinite Sasakian manifold as given in Example
2.1 for m = 4 and q = 1, i.e., (R9

2, ϕ, ξ, η, g1). Let (R4, g2) be a lightlike mani-
fold, where g2 = 1

8

{
(da2)

2+(da4)
2
}
and a1, a2, a3, a4 are the usual coordinates

on R4. Define a map f : R9
2 → R4 by

f(x1, x2, x3, x4, y1, y2, y3, y4, z) = (x1 − x2, x3 − x4, y1 + y2, y3 − y4).

After some computations, we have Kerf∗ = Span
{
V1 = E5 + E6, V2 = E7 +

E8, V3 = E1−E2, V4 = E3+E4, V5 = E9 = ξ
}
, (Kerf∗)

⊥ = Span
{
V1, V3,W1 =

E7 − E8,W2 = E3 − E4

}
with ∆ = Kerf∗ ∩ (Kerf∗)

⊥ = Span
{
V1, V3

}
which

implies S(Kerf∗) = D ⊥ ⟨ξ⟩, where D = Span
{
V2, V4

}
and S(Kerf∗)

⊥ =

Span
{
W1,W2

}
. Now, we obtain ltr(Kerf∗) = Span

{
N1 = − 1

2 (E5−E6), N2 =

− 1
2 (E1 +E2)

}
. Then it is easy to see that f is a 2-lightlike submersion. More-

over, we have ϕ(V1) = 2N2, ϕ(V3) = −2N1, ϕV2 = −V4, ϕ(V4) = V2 which im-
plies ϕ(∆) = ltr(Kerf∗) and ϕ(D) = D. Thus f is a proper radical transversal
2-lightlike submersion.

Example 3.2. Consider an indefinite Sasakian manifold as given in Example
2.1 for m = 5 and q = 1, i.e., (R11

2 , ϕ, ξ, η, g1). Let (R6, g2) be a lightlike mani-
fold, where g2 = 1

8

{
(da2)

2+2(da3)
2+(da5)

2+2(da6)
2
}
and a1, a2, a3, a4, a5, a6

are the usual coordinates on R6. Define a map f : R11
2 → R6 by

f(x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, z) = (x1+x4, x2+x5, x3, y1−y4, y2+y5, y3).

Then by direct calculations, we get Kerf∗ = Span
{
V1 = E6 − E9, V2 = E7 −

E10, V3 = E1 + E4, V4 = E2 − E5, V5 = E11 = ξ
}
, (Kerf∗)

⊥ = Span
{
V1, V3,

W1 = E7 + E10,W2 = E8,W3 = E2 + E5,W4 = E3

}
with ∆ = Kerf∗ ∩

(Kerf∗)
⊥ = Span

{
V1, V3

}
which implies S(Kerf∗) = D ⊥ ⟨ξ⟩, where D =



1198 S. S. SHUKLA AND V. SINGH

Span
{
V2, V4

}
and S(Kerf∗)

⊥ = Span
{
W1,W2,W3,W4

}
. Next, we obtain

ltr(Kerf∗) = Span
{
N1 = − 1

2 (E6 + E9), N2 = − 1
2 (E1 − E4)

}
. Now it is

easy to see that f is a 2-lightlike submersion. Further we have ϕ(V1) = 2N2,
ϕ(V3) = −2N1, ϕV2 = −V4, ϕ(V4) = V2 which implies ϕ(∆) = ltr(Kerf∗) and
ϕ(D) = D. Therefore f is a proper radical transversal 2-lightlike submersion.

Theorem 3.3. There does not exist radical transversal 1-lightlike submersions
between indefinite Sasakian manifolds and lightlike manifolds.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal 1-lightlike
submersion from an indefinite Sasakian manifold M1 onto lightlike manifold
M2. Then we have ∆ = span{V }, which implies ltr(Kerf∗) = span{N}. Now
using (1)-(3), we derive g1(ϕV, V ) = g1(ϕ

2V, ϕV ) = −g1(V, ϕV )+η(V )g1(ξ, ϕV )
which gives g1(ϕV, V ) = 0.

Also, from the definition we have ϕV = N . Therefore, we get g1(ϕV, V ) =
g1(N,V ) = 1, which is a contradiction. Thus, we deduce that f can not be a
radical transversal 1-lightlike submersion. □

Let f be a radical transversal lightlike submersion from an indefinite Sasakian
manifold M1 onto a lightlike manifold M2. Then, we have the following re-
marks: (i) dim(∆) ≥ 2, (ii) dim(S(Kerf∗)) ̸= 2m, m ≥ 1, (iii) Any proper rad-
ical transversal lightlike submersion from an 11-dimensional indefinite Sasakian
manifold onto a 6-dimensional lightlike manifold must be 2-lightlike.

Theorem 3.4. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then, the screen transversal distribution S(Kerf∗)

⊥ is invariant with respect
to ϕ.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike sub-
mersion. Then, for any U ∈ Γ(S(Kerf∗)), V ∈ Γ(∆) and W ∈ Γ(S(Kerf∗)

⊥),
using (3) we get g1(ϕW, V ) = −g1(W,ϕV ) = 0 and g1(ϕW,U) = −g1(W,ϕU) =
0. This imply that ϕ(S(Kerf∗)

⊥)∩∆ = {0} and ϕ(S(Kerf∗)
⊥)∩S(Kerf∗) =

{0}. Similarly, for N ∈ Γ(ltr(Kerf∗)), we obtain g1(ϕW,N) = −g1(W,ϕN) =
0 which implies that ϕ(S(Kerf∗)

⊥) ∩ ltr(Kerf∗) = {0}. Thus the proof is
completed. □

Let f be a radical transversal lightlike submersion from an indefinite Sasakian
manifold M1 onto lightlike manifold M2. Suppose that Q and P denote the
projections of Kerf∗ on ∆ and D, respectively. Then for U ∈ Γ(Kerf∗), we
write

(29) U = QU + PU + η(U)ξ,

where QU ∈ Γ(∆) and PU ∈ Γ(D). On applying ϕ to (29), we get

(30) ϕU = ϕQU + ϕPU.
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If we set ϕQU = ωU and ϕPU = τU , then (30) becomes

(31) ϕU = ωU + τU,

where τU ∈ Γ(D) and ωU ∈ Γ(ltr(Kerf∗)).
From (4), we have

(32) ĝ(U, V )ξ − η(V )U = ∇UϕV − ϕ(∇UV ),

where U, V ∈ Γ(Kerf∗). Now using (32), (31), (9) and (16), we obtain

ĝ(U, V )ξ − η(V )U = ∇̂UτV + T l
UτV + T s

U τV + TUωV +∇l
UωV +Ds(U, ωV )

− τ(∇̂UV )− ω(∇̂UV )− ϕ(T l
UV )− ϕ(T s

UV ).

Then, equating the tangential, screen transversal and lightlike transversal parts
of the above equation, we get

(∇̂Uτ)V = ϕ(T l
UV )− TUωV + ĝ(U, V )ξ − η(V )U,(33)

T s
U τV +Ds(U, ωV )− ϕ(T s

UV ) = 0,(34)

T l
UτV +∇l

UωV − ω(∇̂UV ) = 0.(35)

Lemma 3.5. Let f be a radical transversal lightlike submersion from an in-
definite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then for U, V ∈ Γ(Kerf∗ − ⟨ξ⟩), we have

(i) ĝ(∇̂UV, ξ) = g1(V, ϕU),
(ii) ĝ([U, V ], ξ) = 2g1(V, ϕU).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion. As ∇ is a metric connection, for any U, V ∈ Γ(Kerf∗−⟨ξ⟩), using
(9) and (5), we get

(36) ĝ(∇̂UV, ξ) = g1(V, ϕU).

Since ∇̂ is a symmetric connection, from (36) and (3) we have (ii). □

As the induced connection on a fiber of a lightlike submersion is not a metric
connection, we now find a necessary condition for ∇̂ to be a metric connection.

Theorem 3.6. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).

If the induced connection ∇̂ on f−1(x) is a metric connection, then TUϕV has
no components in D for any U ∈ Γ(Kerf∗) and V ∈ Γ(∆).

Proof. We know that the induced connection ∇̂ on f−1(x) is a metric connec-

tion if and only if ∇̂UV ∈ Γ(∆) for U ∈ Γ(Kerf∗) and V ∈ Γ(∆) [1, Theo-
rem 4]. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike

submersion and ∇̂ be a metric connection. Then, for any W ∈ Γ(D) using
(9), we get g1(∇UV,W ) = 0. From the last equation and (2), we obtain
g1(ϕ∇UV, ϕW ) + η(∇UV )η(W ) = 0, which implies that g1(ϕ∇UV, ϕW )=0.
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Next, using (4) and (16), we derive g1(TUϕV, ϕW ) = 0. Therefore TUϕV has
no components in D. □

Theorem 3.7. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then, D ⊥ ⟨ξ⟩ is integrable if and only if T l

UτV = T l
V τU for any U, V ∈ Γ(D ⊥

⟨ξ⟩).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion. Suppose that U, V ∈ Γ(D ⊥ ⟨ξ⟩). Then (35) becomes

(37) T l
UτV − ω(∇̂UV ) = 0.

On interchanging the role of U and V in (37), we get

(38) T l
V τU − ω(∇̂V U) = 0.

Now from (37) and (38), we derive

(39) T l
UτV − T l

V τU − ω[U, V ] = 0.

Then the proof follows from (39). □

Corollary 3.8. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then the distribution D is not integrable.

Proof. Suppose that D is integrable. Then for any U, V ∈ Γ(D), using Lemma
3.5 we have, 2g1(V, ϕU) = ĝ([U, V ], ξ) = 0. This is a contradiction to the fact
that D is non-degenerate distribution of f−1(x). □

Theorem 3.9. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then, ∆ ⊥ ⟨ξ⟩ is integrable if and only if TUωV − TV ωU = η(U)V − η(V )U
for any U, V ∈ Γ(∆ ⊥ ⟨ξ⟩).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion. Suppose that U, V ∈ Γ(∆ ⊥ ⟨ξ⟩). Then (33) becomes

(40) τ(∇̂UV ) = TUωV + η(V )U − ϕ(T l
UV )− ĝ(U, V ).

Interchanging the role of U and V in (40), we obtain

(41) τ(∇̂V U) = TV ωU + η(U)V − ϕ(T l
V U)− ĝ(V,U).

Sine ∇̂ is a symmetric connection, using (40) and (41), we get

(42) τ([U, V ]) = TUωV − TV ωV + η(V )U − η(U)V.

Then the proof follows from (42). □

Corollary 3.10. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then ∆ is not integrable.
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Proof. Suppose that ∆ is integrable. Then for any U, V ∈ Γ(∆), from Lemma
3.5 we have, 2g1(V, ϕU) = ĝ([U, V ], ξ) = 0. Since we know that for any U ∈
Γ(∆), there exists V ∈ Γ(∆) such that g1(U, ϕV ) ̸= 0 as ϕ(∆) = ltr(Kerf∗).
Thus we derive a contradiction. □

Theorem 3.11. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then ∆ ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if ĝ(TUϕQV, ϕW ) =

η(V )η(∇̂UW ) for any U, V ∈ Γ(∆ ⊥ ⟨ξ⟩) and W ∈ Γ(D).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion. Then, ∆ ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if

∇̂UV ∈ Γ(∆ ⊥ ⟨ξ⟩) for U, V ∈ Γ(∆ ⊥ ⟨ξ⟩). Since ∇ is a metric connection,

using (9) for any U, V ∈ Γ(∆ ⊥ ⟨ξ⟩) and W ∈ Γ(D), we get ĝ(∇̂UV,W ) =

−g1(V,∇UW ). Next, from (2), (4), (9) and (29) we derive ĝ(∇̂UV,W ) =

−g1(ϕQV, ∇̂UϕW )− η(V )η(∇̂UW ). Then from (20) and (23), we obtain

(43) ĝ(∇̂UV,W ) = ĝ(TUϕQV, ϕW )− η(V )η(∇̂UW ).

Thus, our assertion follows from (43). □

Theorem 3.12. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then, S(Kerf∗) defines a totally geodesic foliation if and only if T ∗

UϕN has no
components in D for any U ∈ Γ(S(Kerf∗)) and N ∈ Γ(ltr(Kerf∗)).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion. Then, S(Kerf∗) defines a totally geodesic foliation if and only if

∇̂UV ∈ S(Kerf∗) for U, V ∈ Γ(S(Kerf∗)). Using (9) and (2) for any U, V ∈
Γ(S(Kerf∗)) and N ∈ Γ(ltr(Kerf∗)), we get g1(∇̂UV,N) = g1(ϕ∇UV, ϕN).
Now from (4), (9) and (22), we obtain

(44) g1(∇̂UV,N) = −ĝ(ϕPV, T ∗
UϕN).

Then the proof follows from (44). □

4. Radical transversal lightlike submersions with totally contact
umbilical fibers

In this section, we introduce radical transversal lightlike submersions from
indefinite Sasakian manifolds onto lightlike manifolds with totally contact um-
bilical fibers such that the structure vector field ξ is tangent to fiber. We also
study the geometry of such lightlike submersions.

Definition. Let (M1, ϕ, ξ, η, g1) be an indefinite Sasakian manifold and (M2, g2)
be a lightlike manifold. Suppose that f : (M1, ϕ, ξ, η, g1) → (M2, g2) is a light-
like submersion with the characteristic vector field ξ tangent to f−1(x), i.e., ξ
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belongs to S(Kerf∗). Then, f is called with totally contact umbilical fibers if
for any U, V ∈ Γ(Kerf∗), we have

T l
UV = [ĝ(U, V )− η(U)η(V )]βl + η(U)T l

V ξ + η(V )T l
Uξ,(45)

T s
UV = [ĝ(U, V )− η(U)η(V )]βs + η(U)T s

V ξ + η(V )T s
U ξ,(46)

where βl ∈ Γ(ltr(Kerf∗)) and βs ∈ Γ(S(Kerf⊥
∗ )).

Theorem 4.1. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2)
with totally contact umbilical fibers. Then, βl = 0 if and only if S(kerf∗) is
integrable.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion with totally contact umbilical fibers. Then, using (9), (4) and (2)
for any U, V ∈ Γ(D) and N ∈ Γ(ltr(Kerf∗)), we obtain

(47) g1(T l
UϕV, ϕN)− g1(T l

V ϕU, ϕN) = g1([U, V ], N).

From (45), we have

(48) T l
UϕV − T l

V ϕU = ĝ(U, ϕV )βl − ĝ(V, ϕU)βl.

Now using (47), (48) and (3), we derive

(49) g1([U, V ], N) = 2ĝ(U, ϕV )g1(βl, ϕN),

which completes the proof. □

Theorem 4.2. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2)
with totally contact umbilical fibers. Then, βl = 0 if and only if T ∗

UϕV = 0 for
any U, V ∈ Γ(D).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion with totally contact umbilical fibers. Now from (4), (9) and (31)
for any U, V ∈ Γ(D), we get

∇̂UϕV − ϕ(T l
UV ) = g(U, V )ξ − T l

UϕV − T s
UϕV + τ∇̂UV + ω∇̂UV + ϕ(T s

UV ).

Then for any Z ∈ Γ(∆), we have

(50) g1(∇̂UV, ϕZ) = g1(ϕ(T l
UV ), ϕZ).

Using (50), (20), (2) and (45), we obtain

(51) g1(T ∗
UϕV, ϕZ) = ĝ(U, V )g1(βl, Z).

Then, our assertion follows from (51). □

Theorem 4.3. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2)

with totally contact umbilical fibers. If the induced connection ∇̂ on f−1(x) is a
metric connection, then TUϕZ = η(U)Z for any U ∈ Γ(Kerf∗) and Z ∈ Γ(∆).
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Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike

submersion with totally contact umbilical fibers. Also, suppose that ∇̂ is a
metric connection. Then, from (4), (9), (16), (45), (46) and (31) we get

(52) TUϕZ+∇l
UϕZ+Ds(U, ϕZ)=τ∇̂UZ+ω∇̂UZ+η(U)ϕ(T l

Zξ)+η(U)ϕ(T s
Z ξ).

Equating tangential components of (52), we get

(53) TUϕZ = τ∇̂UZ + ϕ(T l
Zξ)η(U).

Also, using (5) and (9) we have

(54) T l
Zξ = −ϕZ.

Now, from (53) and (54) we obtain

TUϕZ = τ∇̂UZ − ϕ2Z η(U) = τ∇̂UZ + η(U)Z

which imply that TUϕZ = η(U)Z. □

Theorem 4.4. Let f be a radical transversal lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2)
with totally contact umbilical fibers. If ∆ is parallel, then TZ1

ϕZ2 = ϕT l
Z1
Z2

for any Z1, Z2 ∈ Γ(∆).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion with totally contact umbilical fibers. Suppose that ∆ is parallel
distribution. Then, for any Z1, Z2 ∈ (∆), using (4), (9), (16) and (31) we get

TZ1ϕZ2+∇l
Z1
ϕZ2+Ds(Z1, ϕZ2) = τ∇̂Z1Z2+ω∇̂Z1Z2+ϕ(T l

Z1
Z2)+ϕ(T s

Z1
Z2).

On equating tangential parts of the above equation, we obtain

TZ1
ϕZ2 = τ∇̂Z1

Z2 + ϕ(T l
Z1
Z2).

As ∆ is a parallel distribution, we have τ∇̂Z1
Z2 = 0. This completes the

proof. □

Let (M,ϕ, ξ, η, g) be an indefinite Sasakian manifold. Then a plane section
in TpM is called a ϕ-section if it is span by a unit vector U orthogonal to ξ
and ϕU , where U ∈ TpM . A ϕ-sectional curvature of M at p is defined as the
sectional curvature of M at p with respect to a ϕ-section. If the ϕ-sectional
curvature on M is constant for every ϕ-section, then M is called an indefinite
Sasakian space form, denoted by M(c), where c is the ϕ-sectional curvature. In
[9], the curvature tensor R of an indefinite Sasakian space form M(c) is given
as follows:

R(U, V )W =
(c+ 3)

4
{g(V,W )U − g(U,W )V }+ (c− 1)

4
{ϵη(U)η(W )V

− ϵη(V )η(W )U + g(U,W )η(V )ξ − g(V,W )η(U)ξ

+ g(ϕV,W )ϕU + g(ϕW,U)ϕV − 2g(ϕU, V )ϕW},(55)

where U, V,W ∈ Γ(TM).
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At the last of this section, we investigate the existence (non-existence) of
radical transversal lightlike submersion from an indefinite Sasakian space form
onto a lightlike manifold with totally contact umbilical fibers. For this purpose,
we first prove some lemmas.

Lemma 4.5. Let f be a radical transversal lightlike submersion from an indef-
inite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2) with
totally contact umbilical fibers. Then, βs = 0.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion with totally contact umbilical fibers. Then for U ∈ Γ(D), using
(4), (9) and (31), we get

∇̂UϕU + T l
UϕU + T s

UϕU − τ∇̂UV − ω∇̂UV − ϕ(T l
UV )− ϕ(T s

UU) = ĝ(U,U)ξ.

Equating the components on S(Kerf∗)
⊥ in the above equation, we get

(56) T s
UϕU = ϕ(T s

UU).

Now, using (56) and (46) for W ∈ Γ(S(Kerf∗)
⊥), we obtain

ĝ(U,U)g1(βs, ϕW ) = −ĝ(U, ϕU)g1(βs,W ),

which imply that ĝ(U,U)g1(βs,W ) = 0. As S(Kerf∗) and S(Kerf∗)
⊥ are

non-degenerate, we derive βs = 0. □

Lemma 4.6. Let f be a radical transversal lightlike submersion from an indef-
inite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2) with
totally contact umbilical fibers. Then, for any U ∈ Γ(D) and Z ∈ Γ(∆), we
have

T l
∇̂UϕU

Z = −ĝ(∇̂UϕU, ξ)ϕZ,(57)

T l
ϕUξ = 0,(58)

ĝ(U, ∇̂ϕUZ) = −g1(T l
ϕUU,Z),(59)

ĝ(ϕU, ∇̂UZ) = −g1(T l
UϕU,Z).(60)

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion with totally contact umbilical fibers. Then, using (5) and (9), we
obtain

∇̂Zξ + T l
Zξ + T s

Z ξ = −ϕZ.

Considering the components on ltr(Kerf∗) in the above equation, we get

(61) T l
Zξ = −ϕZ.

Also, from (45) we derive

(62) T l
∇̂UϕU

Z = η(∇̂UϕU)T l
Zξ.

Now, using (62) and (61), we get T l
∇̂UϕU

Z = −η(∇̂UϕU)ϕZ. Thus we have

(57).
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From (9), (5) and (1), we get

U = ∇̂ϕUξ + T l
ϕUξ + T s

ϕUξ,

which proves (58).
As ∇ is a metric connection, we get

g1(U,∇ϕUZ) = −g1(∇ϕUU,Z).

Then, by using (9) we derive (59).
By a simple calculation, we obtain

g1(ϕU,∇UZ) = −g1(∇UϕU,Z).

Thus, from (9) we have (60). □

Lemma 4.7. Let f be a radical transversal lightlike submersion from an in-
definite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).
Then, for any U ∈ Γ(D) we have

ĝ(∇̂UϕU, ξ) = ĝ(ϕU, ϕU),(63)

ĝ(∇̂ϕUU, ξ) = −ĝ(U,U).(64)

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a radical transversal lightlike
submersion. Since ∇ is a metric connection, we obtain

(65) g1(∇UϕU, ξ) = −g1(ϕU,∇Uξ).

Now, from (65), (9) and (5) we derive (63). Following similar steps as above,
we have (64). □

Theorem 4.8. There exists no proper radical transversal lightlike submersion
from an indefinite Sasakian space form (M1(c), ϕ, ξ, η, g1) onto a lightlike man-
ifold (M2, g2) with totally contact umbilical fibers and c ̸= −3.

Proof. Let f : M1(c) → M2 be a proper radical transversal lightlike submersion
with totally contact umbilical fibers and c ̸= −3. Then for any U ∈ Γ(D) and
Z1, Z2 ∈ Γ(∆), using (28), (55), (46) and Lemma 4.5, we obtain

(66)
1− c

2
ĝ(ϕU, ϕU)g1(ϕZ1, Z2)=g1

(
(∇UT l)(ϕU,Z1)−(∇ϕUT l)(U,Z1), Z2

)
,

where

(∇UT l)(ϕU,Z1) = ∇l
UT l

ϕUZ1 − T l
∇̂UϕU

Z1 − T l
ϕU ∇̂UZ1,(67)

(∇ϕUT l)(U,Z1) = ∇l
ϕUT l

UZ1 − T l
∇̂ϕUU

Z1 − T l
U ∇̂ϕUZ1.(68)

Using (45), (63), (61) and (3), we get

(69) T l
∇̂UϕU

Z1 = −ĝ(ϕU, ϕU)ϕZ1.

From (45) and (58), we have

(70) T l
ϕU ∇̂UZ1 = ĝ(ϕU, ∇̂UZ1)βl.
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By using (67), (69), (70) and (45), we obtain

(71) (∇UT l)(ϕU,Z1) = ĝ(U,U)ϕZ1 − ĝ(ϕU, ∇̂UZ1)βl.

From (45), (61), (3) and (64), we get

(72) T l
∇̂ϕUU

Z1 = ĝ(U,U)ϕZ1.

Using (45) and (58), we have

(73) T l
U ∇̂ϕUZ1 = ĝ(U, ∇̂ϕUZ1)βl.

Next, from (68), (72), (73) and (45), we derive

(74) (∇ϕUT l)(U,Z1) = −ĝ(U,U)ϕZ1 − ĝ(U, ∇̂ϕUZ1)βl.

Thus, from (66), (71) and (74), we get

1− c

2
ĝ(U,U)g1(ϕZ1, Z2)

= 2ĝ(U,U)g1(ϕZ1, Z2) + ĝ(U, ∇̂ϕUZ1)g1(βl, Z2)− ĝ(ϕU, ∇̂UZ1)g1(βl, Z2).

Now, using (59), (60) and the above equation, we have

1− c

2
ĝ(U,U)g1(ϕZ1, Z2)

= 2ĝ(U,U)g1(ϕZ1, Z2)− g1(T l
ϕUU,Z1)g1(βl, Z2) + g1(T l

UϕU,Z1)g1(βl, Z2),

which imply that (3 + c)ĝ(U,U)g1(ϕZ1, Z2) = 0. As ∆ ⊕ ltr(Kerf∗) and
S(Kerf∗) are non-degenerate, we can choose Z1, Z2 and U such that ĝ(U,U) ̸=
0 and g1(ϕZ1, Z2) ̸= 0. Thus, we have c = −3, which is a contradiction. □

5. Transversal lightlike submersions

In this section, we study transversal lightlike submersions from indefinite
Sasakian manifolds onto lightlike manifolds such that the structure vector field
ξ is tangent to fiber.

Definition. Let (M1, ϕ, ξ, η, g1) be an indefinite Sasakian manifold and (M2, g2)
be a lightlike manifold. Suppose that f : (M1, ϕ, ξ, η, g1) → (M2, g2) is a light-
like submersion with the characteristic vector field ξ tangent to f−1(x), i.e., ξ
belongs to S(Kerf∗). Then f is called a transversal lightlike submersion if

(i) ϕ(∆) = ltr(Kerf∗),
(ii) ϕ(D) ⊆ S(Kerf∗)

⊥, whereD is a non-degenerate subbundle of S(Kerf∗)

such that S(Kerf∗) = D ⊥ ⟨ξ⟩.

Suppose that µ is the orthogonal complementary subbundle to ϕ(D) in
S(Kerf∗)

⊥, that is,

(75) S(Kerf∗)
⊥ = ϕ(D) ⊥ µ.

Then it is easy to see that µ is invariant with respect to ϕ. In view of the above
definition, we have the following result.
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Theorem 5.1. There does not exist transversal 1-lightlike submersion from an
indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2).

A transversal lightlike submersion is said to be proper if S(Kerf∗)
⊥ ̸= 0

and D ̸= 0. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold onto a lightlike manifold. Then we have: (i) dim(∆) ≥ 2,
(ii) Any proper transversal lightlike submersion from a 7-dimensional indefinite
Sasakian manifold onto a 2-dimensional lightlike manifold must be 2-lightlike.

Now, we give two examples of proper transversal lightlike submersions.

Example 5.2. Consider an indefinite Sasakian manifold as given in Example
2.1 for m = 6 and q = 1, i.e., (R13

2 , ϕ, ξ, η, g1). Let (R6, g2) be a lightlike mani-
fold, where g2 = 1

8

{
(da2)

2 + (da3)
2 + (da5)

2 + (da6)
2
}
and a1, a2, a3, a4, a5, a6

are the usual coordinates on R6. Define a map f : R13
2 → R6 by

f(x1, . . . , x6, y1, . . . , y6, z) = (x1 +x3, x2 −x4, x5 +x6, y1 − y3, y2 + y4, y5 − y6).

After some computations, we have Kerf∗ = Span
{
V1 = E7 − E9, V2 = E8 +

E10, V3 = E11 − E12, V4 = E1 + E3, V5 = E2 − E4, V6 = E5 + E6, V7 =
E13 = ξ

}
, (Kerf∗)

⊥ = Span
{
V1, V4,W1 = E8 − E10,W2 = E11 + E12,W3 =

E2 + E4,W4 = E5 − E6

}
with ∆ = Kerf∗ ∩ (Kerf∗)

⊥ = Span
{
V1, V4

}
,

which implies S(Kerf∗) = D ⊥ ⟨ξ⟩, where D = Span
{
V2, V3, V5, V6

}
and

S(Kerf∗)
⊥ = Span

{
W1,W2,W3,W4

}
. Now, we get ltr(Kerf∗) = Span

{
N1 =

− 1
2 (E7 + E9), N2 = − 1

2 (E1 − E3)
}
. Then it is easy to see that f is a 2-

lightlike submersion. Also, we have ϕ(V1) = 2N2, ϕ(V4) = −2N1, ϕV2 = −W3,
ϕ(V3) = −W4, ϕ(V5) = W1 and ϕ(V6) = W2, which implies ϕ(∆) = ltr(Kerf∗)
and ϕ(D) ⊆ S(Kerf∗)

⊥. Hence f is a proper transversal 2-lightlike submersion.

Example 5.3. Consider an indefinite Sasakian manifold as given in Example
2.1 for m = 7 and q = 1, i.e., (R15

2 , ϕ, ξ, η, g1). Let (R8, g2) be a lightlike
manifold, where g2 = 1

8

{
(da2)

2+(da3)
2+2(da4)

2+(da6)
2+(da7)

2+2(da8)
2
}

and a1, a2, a3, a4, a5, a6, a7, a8 are the usual coordinates on R8. Define a map
f : R15

2 → R8 by

f(x1, . . . , x7, y1, . . . , y7, z)=(x1+x5, x2+x6, x3+x4, x7, y1−y5, y2−y6, y3−y4, y7).

Then by direct calculations, we get Kerf∗ = Span
{
V1 = E8 − E12, V2 = E9 −

E13, V3 = E10−E11, V4 = E1+E5, V5 = E2+E6, V6 = E3+E4, V7 = E15 = ξ
}
,

(Kerf∗)
⊥ = Span

{
V1, V4,W1 = E9 + E13,W2 = E10 + E11,W3 = E14,W4 =

E2−E6,W5 = E3−E4,W6 = E7

}
with ∆ = Kerf∗∩(Kerf∗)

⊥ = Span
{
V1, V4

}
which implies S(Kerf∗) = D ⊥ ⟨ξ⟩, where D = Span

{
V2, V3, V5, V6

}
and

S(Kerf∗)
⊥ = Span

{
W1,W2,W3,W4,W5,W6

}
. Thus, we obtain ltr(Kerf∗) =

Span
{
N1 = − 1

2 (E8+E12), N2 = − 1
2 (E1−E5)

}
. Now it is easy to see that f is a

2-lightlike submersion. Further we have ϕ(V1) = 2N2, ϕ(V4) = −2N1, ϕ(V2) =
−W4, ϕ(V3) = −W5, ϕ(V5) = W1 and ϕ(V6) = W2 which implies ϕ(∆) =
ltr(Kerf∗) and ϕ(D) ⊂ S(Kerf∗)

⊥. Therefore f is a proper transversal 2-
lightlike submersion.
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Let f be a transversal lightlike submersion from an indefinite Sasakian man-
ifold M1 onto a lightlike manifold M2. Also, suppose that Q and P denote the
projections of Kerf∗ on ∆ and D, respectively. Then, for U ∈ Γ(Kerf∗), we
write

(76) U = QU + PU + η(U)ξ,

where QU ∈ Γ(∆) and PU ∈ Γ(D). On applying ϕ to (76), we have

(77) ϕU = ϕQU + ϕPU.

If we set ϕQU = LU and ϕPU = SU , then (77) becomes

(78) ϕU = LU + SU,

where LU ∈ Γ(ltr(Kerf∗)) and SU ∈ Γ(S(Kerf∗)
⊥). Using (75), for W ∈

Γ(S(Kerf∗)
⊥), we have

(79) ϕW = BW + CW,

where BW ∈ Γ(D) and CW ∈ Γ(µ).
Now, using (4), (78), (9), (16), (17) and (79), for U, V ∈ Γ(Kerf∗), we

obtain

TULV + TUSV − ϕT l
UV − BT s

UV = ĝ(U, V )ξ − η(V )U,(80)

Ds(U,LV ) +∇s
USV − S∇̂UV = CT s

UV,(81)

∇l
ULV +Dl(U, SV ) = L(∇̂UV ).(82)

Now, we discuss the integrability of distributions on a fiber of transversal
lightlike submersions.

Theorem 5.4. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2). Then,
∆ ⊥ ⟨ξ⟩ is integrable if and only if Ds(U,LV ) = Ds(V,LU) for U, V ∈ Γ(∆ ⊥
⟨ξ⟩).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a transversal lightlike submersion.
Suppose that U, V ∈ Γ(∆ ⊥ ⟨ξ⟩). Then, (81) becomes

(83) Ds(U,LV )− S∇̂UV − CT s
UV = 0.

Interchanging the role of U and V in (83), we get

(84) Ds(V,LU)− S∇̂V U − CT s
V U = 0.

As ∇̂ is symmetric connection, using (83) and (84), we obtain

(85) Ds(U,LV )−Ds(V,LU) = S[U, V ].

Then the proof follows from (85). □

Corollary 5.5. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifolds (M2, g2). Then,
∆ is not integrable.
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The proof of the above corollary is similar as that of Corollary 3.10, so we
omit it.

Theorem 5.6. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2). Then,
D ⊥ ⟨ξ⟩ is integrable if and only if Dl(U, SV ) = Dl(V, SU) for U, V ∈ Γ(D ⊥
⟨ξ⟩).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a transversal lightlike submersion.
Suppose that U, V ∈ Γ(D ⊥ ⟨ξ⟩). Then (82) becomes

(86) Dl(U, SV ) = L∇̂UV.

On interchanging the role of U and V in (86), we get

(87) Dl(V, SU) = L∇̂V U.

Now, from (86) and (87), we obtain

Dl(U, SV )−Dl(V, SU) = L[U, V ].

Thus, the proof follows from the above equation. □

Theorem 5.7. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2). Then,
∆ ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if Ds(U,LV ) = CT s

UV
for U, V ∈ Γ(∆ ⊥ ⟨ξ⟩).

Proof. Since we have, ∆ ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if

∇̂UV ∈ Γ(∆ ⊥ ⟨ξ⟩) for U, V ∈ Γ(∆ ⊥ ⟨ξ⟩). Using (81), for U, V ∈ Γ(∆ ⊥ ⟨ξ⟩),
we obtain Ds(U,LV )− S∇̂UV − CT s

UV = 0. Then, the proof follows from the
last equation. □

Theorem 5.8. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2). Then,
D ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if Dl(V, SU) = 0 for
U, V ∈ Γ(D ⊥ ⟨ξ⟩).

Proof. As we have, D ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if

∇̂UV ∈ Γ(D ⊥ ⟨ξ⟩) for U, V ∈ Γ(D ⊥ ⟨ξ⟩). By using (82), for U, V ∈ Γ(D ⊥
⟨ξ⟩), we get Dl(U, SV ) = L∇̂UV . Thus the proof is completed. □

Theorem 5.9. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2). Then,

the induced connection ∇̂ on f−1(x) is a metric connection if and only if

BDs(U, ϕV ) = η(∇̂UV )ξ for U ∈ Γ(Kerf∗) and V ∈ Γ(∆).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a transversal lightlike submersion.
Using (4), (9), (16), (78) and (79), for U ∈ Γ(Kerf∗) and V ∈ Γ(∆), we get

−∇̂UV = LTUϕV + STUϕV + ϕ∇l
UϕV + BDs(U, ϕV )
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+ CDs(U, ϕV )− η(∇̂UV )ξ + T l
UV + T s

UV.

Equating the tangential components of the above equation, we obtain

(88) −∇̂UV = BDs(U, ϕV ) + ϕ∇l
UϕV − η(∇̂UV )ξ.

Since we have, the induced connection ∇̂ on f−1(x) is a metric connection if

and only if ∇̂UV ∈ Γ(∆) for U ∈ Γ(Kerf∗) and V ∈ Γ(∆). Thus, the proof
follows from (88). □

Theorem 5.10. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2) with totally

contact umbilical fibers. If the induced connection ∇̂ on f−1(x) is a metric, then
we have Ds(U, ϕZ) = η(U)CT s

Z ξ for U ∈ Γ(Kerf∗) and Z ∈ Γ(∆).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a transversal lightlike submersion

with totally contact umbilical fibers. Also, suppose that ∇̂ is a metric connec-
tion. Then, using (4), (9), (16) and (78), for U ∈ Γ(Kerf∗) and Z ∈ Γ(∆), we
get

(89) TUϕZ +∇l
UϕZ +Ds(U, ϕZ)− L∇̂UZ − S∇̂UZ − ϕT l

UZ − ϕT s
UZ = 0.

From (89), (45), (46) and (79), we have

TUϕZ +∇l
UϕZ +Ds(U, ϕZ)− L∇̂UZ − S∇̂UZ

− η(U)ϕT l
Zξ − η(U)BT s

Z ξ − η(U)CT s
Z ξ = 0.

Considering the components on S(Kerf∗)
⊥ in the above equation, we obtain

(90) Ds(U, ϕZ)− η(U)CT s
Z ξ = S∇̂UZ.

Since ∇̂UZ ∈ Γ(∆), from (90) we have Ds(U, ϕZ) = η(U)CT s
Z ξ. □

Now, we obtain a classification theorem for transversal lightlike submersions
between indefinite Sasakian manifolds and lightlike manifolds with totally con-
tact umbilical fibers.

Lemma 5.11. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2) with to-
tally contact umbilical fibers. Then, βl = 0 if and only if Ds(U, ϕZ) has no
components in ϕ(D) for U ∈ Γ(D) and Z ∈ Γ(∆).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a transversal lightlike submersion
with totally contact umbilical fibers. Then, using (4) for U ∈ Γ(D) and Z ∈
Γ(∆), we get

(91) ∇UϕU − ϕ(∇UU) = ĝ(U,U)ξ.

From (91), (9), (17), (78) and (79), we obtain

ĝ(U,U)ξ = TUϕU +Dl(U, ϕU) +∇s
UϕU − L∇̂UU − S∇̂UU − ϕT l

UU

− BT s
UU − CT s

UU.
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Equating tangential parts in the above equation, we have

(92) ĝ(U,U)ξ = TUϕU − BT s
UU − ϕT l

UU.

Thus, we get

(93) g1(TUϕU, ϕZ)− g1(ϕT l
UU, ϕZ) = 0.

Now, using (93), (2), (45) and (19), we derive

(94) g1(Ds(U, ϕZ), ϕU) + ĝ(U,U)g1(βl, Z) = 0.

Since D is non-degenerate, our assertion follows from (94). □

Theorem 5.12. Let f be a transversal lightlike submersion from an indefinite
Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike manifold (M2, g2) with totally
contact umbilical fibers and satisfying ϕ(D) = S(Kerf∗)

⊥. Then, βs = 0 or
dim(D) = 1.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a transversal lightlike submersion
with totally contact umbilical fibers. Then, for V ∈ Γ(D), using (92), (79) and
(3), we get

(95) ĝ(TUϕU, V ) = −g1(T s
UU, ϕV ).

Also from (18), we have

(96) ĝ(TUϕU, V ) = −g1(T s
UV, ϕU).

From (95), (96) and (46), we obtain

(97) ĝ(U,U)g1(βs, ϕV ) = ĝ(U, V )g1(βs, ϕU).

On interchanging the role of U and V in (97), we obtain

(98) ĝ(V, V )g1(βs, ϕU) = ĝ(V,U)g1(βs, ϕV ).

Now, using (97) and (98), we derive

g1(βs, ϕU) =
ĝ(U, V )2

ĝ(U,U)ĝ(V, V )
g1(βs, ϕU).

Since S(Kerf∗)
⊥ is non-degenerate, we have either βs = 0 or D is one dimen-

sional. □
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