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CIRCULAR SPECTRUM AND ASYMPTOTIC PERIODIC

SOLUTIONS TO A CLASS OF NON-DENSELY DEFINED

EVOLUTION EQUATIONS

Le Anh Minh and Nguyen Ngoc Vien

Abstract. In this paper, for the bounded solution of the non-densely
defined non-autonomous evolution equation, we present the condition for

asymptotic periodicity by using the circular spectral theory of functions

on the half line and the extrapolation theory of non-densely defined evo-
lution equation.

1. Introduction

Studying the periodicity of solutions is one of the great problems for the
qualitative theory of evolution equations. The existence and uniqueness of
periodic solutions have been proved for several important classes of densely
defined evolution equations by using classical approaches such as the fixed
point method [6, 16, 20], the use of ultimate boundedness of solutions and the
compactness of Poincare map over compact embedding [1, 11, 18], the spectral
theory of functions [14, 15, 17], ergodic approach [10]. As indicated in [3], we
sometimes need to deal with non-densely defined operators. For example, when
we look at a one-dimensional heat equation with Dirichlet conditions on [0, π]

and consider ∆ = ∂2

∂x2 in C([0, π],R), in order to measure the solutions in the
sup-norm, then the domain

D(∆) =
{
u ∈ C2([0, π],R) : u(0) = u(π) = 0

}
is not dense in C([0, π],R) with the sup-norm since

D(∆) = {u ∈ C([0, π],R) : u(0) = u(π) = 0} ≠ C([0, π],R).

Many results on the existence and uniqueness of periodic solutions of non-
densely defined evolution equations are obtained [2,4,6,7]. Especially, in [5] K.
Ezzinbi and M. Jazar gave a new criterion related to Massera’s approach which
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is more general than the known exponential dichotomy for the existence of pe-
riodic and almost periodic solutions for some evolution equations in a Banach
space of the form

(1)

{
d

dt
x(t) = (A+B(t))x(t) + f(t) for t ≥ 0,

x(0) = x0,

where A : D(A) ⊂ X → X is a nondensely defined linear operator on a Banach
space X which satisfies the Hille-Yosida condition:

(M1): there exist M0 ≥ 1 and ω0 ∈ R such that (ω0,+∞) ⊂ ρ(A) and

|R(ξ, A)n| ≤ M0

(ξ − ω0)
n for n ∈ N and ξ > ω0,

where ρ(A) is the resolvent set of A and R(ξ, A) = (ξ − A)−1; the function
f : R+ → X is bounded continuous; for every t ≥ 0, B(t) is a bounded linear
operator on X.

Recently, Luong et al., in [12], studied the densely defined case of Eq. (1)
when A(t) := A+B(t) generates a 1-periodic strongly continuous evolutionary
process (U(t, s))t≥s≥0 defined on the whole space X and f is asymptotic 1-
periodic in the sense that f is bounded, continuous and limt→∞(f(t + 1) −
f(t)) = 0 (see e.g. [8] and its references). We recall that a function x(·) is an
asymptotic solution to Eq. (1) if there is a continuous function ϵ(·) such that
lim
t→∞

ϵ(t) = 0 and

x′(t) = (A+B(t))x(t) + f(t) + ϵ(t), ∀t ≥ 0.

By using the spectral theory of functions on the half line and the induced evolu-
tion semigroups in various spectral function spaces, Luong et al. [12] introduced
a new condition for the unique existence bounded solution to be asymptotic
1-periodic on the half line. More precisely, they showed that a bounded and
continuous function g : R → X is asymptotic 1-periodic if and only if its circu-
lar spectrum σ(g) (see [15] for more detail of this notion) satisfies σ(g) ⊂ {1}.
Therefore, the existence of asymptotic 1-periodic solutions is reduced to that
of solutions x(·) such that σ(x(·)) ⊂ {1}. The search for asymptotic solutions
x(·) with σ(x(·)) ⊂ {1} can be done by using the evolution semigroup associ-
ated with the homogeneous equations x′(t) = A(t)x(t) in appropriate function
spaces. In the case that the operator A is not densely defined, the linear part
A+ B(t) does not generate a strongly continuous evolutionary process on the
whole space X, so the results obtained in [12] are not guaranteed. Moreover,
the inhomogeneous part f(·) takes value in the whole space X while the values

of mild solution x(·) is exactly in X0 = D(A). To overcome these difficulties,
in this paper we first use the theory of extrapolation spaces to express the mild
solution of Eq. (1) in terms of an evolution process (UB(t, s))t≥s≥0 defined on
closed subspace X0 (see [7] and the references therein for more detail). Then,
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by using the periodicity and boundedness of (UB(t, s)) combined with the cir-
cular spectrum of functions we state the conditions for the unique bounded
solution of (1) to be asymptotic periodic which fit the case of densely defined
of non-autonomous linear part.

Before concluding this introduction section we give an outline of the paper.
We briefly list the main notations in Section 2. This section also contains
the definitions as well as properties of circular spectra of functions on the half
line and extrapolation spaces. Section 3 contains the main result of the paper
that deals with the asymptotic periodicity of solutions to non-densely defined
nonautonomous evolution equations of the form (1).

2. Preliminaries

2.1. Notations

In this paper R, R+ and C stand for the real line, its positive half line,
and the complex plane. If X denotes a (complex) Banach space, then L(X)
stands for the space of all bounded linear operators in X. The spectrum of a
linear operator T in a Banach space is denoted by σ(T ), and ρ(T ) := C\σ(T ).
We denote by BC (R+, X) the space of all bounded continuous functions from
R+ to a Banach space X with supremum norm, and C0(R+, X) is the space
{g ∈ BC(R+, X) : limt→∞ g(t) = 0}. Finally, Γ will stand for the unit circle
{z ∈ C : |z| = 1}.

2.2. Circular spectra of functions on the half line

Many of the concepts and results in this subsection are discussed and proved
in [12,13].

We consider the translation operator S in BC(R+, X0) defined as

[Sx](ξ) := x(1 + ξ), ξ ≥ 0, x ∈ BC(R+, X0).

Furthermore, we also consider the quotient spaces

Y := BC
(
R+, X0

)
/C0

(
R+, X0

)
.

Then, S induces operators in Y that will be denoted by S̄. It is well known
that S̄ is an isometry, so σ(S̄) ⊂ Γ.

For each x ∈ BC (R+, X0) let us consider the complex function [§x](λ) in
λ ∈ C\Γ defined as

[§x](λ) := R(λ, S̄)x̄, λ ∈ C\Γ.

Definition ([13]). The circular spectrum of a function x ∈ BC (R+, X0) is
defined to be the set of all ξ0 ∈ Γ such that [§x](λ) has no analytic extension
into any neighborhood of ξ0 in the complex plane. This spectrum of x is
denoted by σ(x). We will denote by ρ(x) the set Γ\σ(x).

The following lemma justifies the introduction of these concepts of spectra.
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Lemma 2.1 ([13]). Let x ∈ BC (R+, X0). Then, for each x ∈ BC (R+, X0),

σ(Qx) ⊂ σ(x)

provided that Q is an operator in BC (R+, X0) that commutes with S and leaves
C0 (R+, X0) invariant.

2.3. Mild solutions and extrapolation spaces

It is well known that (see [7] and the references therein) the part A0 of A in
X0 generates a C0-semigroup (T0(t))t≥0 onX0 satisfying ∥T0(t)∥ ≤ Meωt, ∀t ≥
0. Moreover, for λ ∈ ρ (A0) the resolvent R (λ,A0) is the restriction of R(λ,A)
to X0. On X0 we introduce the norm ∥x∥−1 = ∥R (λ0, A0)x∥ , where λ0 ∈ ρ(A)
is fixed. A different choice of λ0 ∈ ρ(A) leads to an equivalent norm. The
completion X−1 of X0 with respect to ∥ · ∥−1 is called the extrapolation space
of X0 with respect to A. The extrapolated semigroup (T−1(t))t≥0 consists of

the unique continuous extensions T−1(t) of the operators T0(t), t ≥ 0, to X−1.
The semigroup (T−1(t))t≥0 is strongly continuous and its generator A−1 is the

unique continuous extension of A0 to L (X0, X−1). Moreover, X is continuously
embedded in X−1 and R (λ,A−1) is the unique continuous extension of R(λ,A)
to X−1 for λ ∈ ρ(A). Finally, A0 and A are the parts of A−1 in X0 and X,
respectively.

We now give the definition of a mild solution of (1) as follows.

Definition. Let x0 ∈ X0. A function x ∈ C(R+, X0) is called a mild solution
to (1) if it satisfies the integral equation

x(t) = T0(t− s)x(s) +

∫ t

s

T−1(t− h)(B(h)x(h) + f(h))dh

for all t ≥ s ≥ 0.

We consider the following homogeneous linear equation

(2)

{
dx

dt
= (A+B(t))x(t), t ≥ 0,

x(0) = x0 ∈ X0

and assume that
(M2): t 7→ B(t)x is strongly measurable for every x ∈ X0,
(M3): The operator B(·) is 1-periodic.

Proposition 2.2 ([7]). Let (M1)-(M3) be satisfied. Then, there exists a unique
1-periodic strongly continuous evolutionary process (UB(t, s))t≥s≥0 that satisfies

(i) UB(t, s) ∈ L(X0) for all t ≥ s ≥ 0;
(ii) UB(t, t) = I for every t ∈ R;
(iii) UB(t, s)UB(s, r) = UB(t, r) for all t ≥ s ≥ r;
(iv) UB(t+ 1, s+ 1) = UB(t, s) for all t ≥ s ≥ 0;
(v) The function (t, s, x) 7→ UB(t, s)x is continuous in (t, s, x);
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(vi) There are positive constants K, δ such that

∥UB(t, s)∥ ≤ Keδ(t−s) for all t ≥ s ≥ 0.

(vii) Furthermore,

UB(t, s)x = T0(t− s)x+

∫ t

s

T−1(t− h)B(h)UB(h, s)xdh, t ≥ s ≥ 0, x ∈ X0,

i.e., t 7→ UB(t, 0)x0 is the unique solution of (2).

Theorem 2.3 ([7]). Let f ∈ L1
loc(R+, X) and x0 ∈ X0. Then there is a unique

mild solution x(·) ∈ C (R+, X0) of Eq. (1) which satisfies the integral equation

x(t) = UB(t, s)x(s) + lim
ξ→∞

∫ t

s

UB(t, h)ξR(ξ, A)f(h)dh for t ≥ s ≥ 0.

Moreover, limξ→∞
∫ t

s
UB(t, h)ξR(ξ, A)f(h)dh ∈ X0 exists uniformly for t ≥ s

in compact sets in R.

3. Main results

3.1. Asymptotic periodic functions and their spectral characteriza-
tion

We begin this subsection by recalling the concept of asymptotic periodic
functions on the half line. It is noted that our definition of asymptotic period-
icity is slightly different from the concept used in many previous works, and the
period 1 is not a restriction, but just for the reader’s convenience. All results
can be easily stated for the general case of period.

Definition ([12]). A function f ∈ BC (R+, X) is said to be asymptotic 1-
periodic if

(3) lim
t→∞

(f(t+ 1)− f(t)) = 0.

Remark 3.1. It is worth emphasizing that if f can be written in the form

f(t) = p(t) + q(t),

where p, q are continuous functions such that p is 1-periodic and limt→∞ q(t) =
0, then it satisfies (3) but the inversion is not true (see [12, Example 3.3]).

Proposition 3.2 ([12]). The following assertions are valid:

i) Let x ∈ BC (R+, X0). Then, σ(x) = ∅ if and only if x ∈ C0 (R+, X0) ;
ii) Let p ∈ R and x ∈ BC (R+, X0). Then, σ(x) ⊂

{
eip

}
if and only if

lim
t→∞

(
x(t+ 1)− eipx(t)

)
= 0.

Lemma 3.3 ([12]). Assume that Q(t), t ∈ R+ is a family of bounded linear
operators in X0 that satisfies

(i) The function R+ ×X0 ∋ (t, x) 7→ Q(t)x ∈ X0 is continuous,
(ii) Q(t+ 1) = Q(t) for all t ∈ R+,
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(iii) sup0≤t≤1 ∥Q(t)∥ < ∞.

Then, for each x(·) ∈ BC(R+, X0) we have

σ(Qx(·)) ⊂ σ(x(·)),

where Q denotes the operator in BC(R+, X0) defined as

[Qx(·)](t) := Q(t)x(t), t ∈ R+.

3.2. Asymptotic periodic solution

Definition. A function x(·) ∈ BC(R+, X0) is said to be an asymptotic mild
solution of (1) if there exists a function ϵ(·) ∈ C0(R+, X) such that

x(t) = UB(t, s)x(s) + lim
ξ→∞

∫ t

s

UB(t, h)ξR(ξ, A)[f(h) + ϵ(h)]dh

for all t ≥ s ≥ 0.

Now, for T is an operator in a Banach space X0, we denote σΓ(T ) := σ(T )∩
Γ. We also recall the following well known result on the spectrum of the
“monodromy” operators

P (t) := UB(t+ 1, t)

for each t ≥ 0. When t = 1 we denote P := P (1). In particular, P = UB(1, 0)
if (UB(t, s))t≥s≥0 is a 1-periodic process. Let us denote by P the operator of
multiplication u 7→ Pu defined as

Pu(t) = P (t)u(t).

Lemma 3.4. Let (UB(t, s))t≥s≥0 be a 1-periodic process in X0. Then, for each
t ≥ 0

σ(P (t))\{0} = σ(P )\{0}.

Proof. See [9, Lemma 7.2.2, p. 197]. □

The unique existence of an asymptotic mild solution of (1) is implied from
Theorem 2.3, by the fact that f ∈ BC(R+, X) ⊂ L1

loc(R+, X). Now we prove
the relation between the spectral of asymptotic mild solution x with spectral
of P and f .

Lemma 3.5. Let x(·) ∈ BC(R+, X0) be an asymptotic mild solution of (1)
and f ∈ BC(R+, X). Then

(4) σ(x) ⊂ σΓ(P ) ∪ σ(f).

Proof. By the definition of asymptotic mild solutions there is a function ϵ(·) ∈
C0 (R+, X) such that, for each t ∈ R+

(5) x(t+1) = UB(t+1, t)x(t)+ lim
ξ→∞

∫ t+1

t

UB(t+1, h)ξR(ξ, A)(f(h)+ϵ(h))dh.

For ξ > ω we set fξ=ξR(ξ, A)f . Note that σ(fξ) ⊂ σ(f) and fξ ∈ BC(R+, X0).
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Let us denote

Fξ(t) :=

∫ t+1

t

UB(t+ 1, h)fξ(h)dh.

Observe that the operator taking fξ to Fξ commutes with S, and it is a bounded
linear operator from BC (R+, X0) into itself, so by Lemma 3.3,

σ(Fξ) ⊂ σ(fξ).

Moreover, Fξ ∈ BC(R+, X0) and

Fξ(t) → F (t) := lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)fξ(h)dh ∈ X0,

which shows that

σ(F ) ⊂ σ(Fξ) ⊂ σ(fξ) ⊂ σ(f).

Also, if we denote

ε(t) = lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)ξR(ξ, A)ϵ(h)dh,

then ε(·) ∈ C0(R+, X0). Hence, for the function

w(t) := lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)ξR(ξ, A)(f(h) + ϵ(h))dh = F (t) + ε(t)

we have

σ(w) = σ(F ) ⊂ σ(f).

The periodicity of the evolution process (UB(t, s))t≥s yields that P (t) is 1-
periodic, so it commutes with the translation S. Therefore, (5) gives

S̄x̄ = Px̄+ F̄ .

Let 0 ̸= λ0 /∈ σΓ(P ) ∪ σ(f) and V be a fixed small open neighborhood of λ0

such that

V ∩ (σΓ(P ) ∪ σ(f)) = ∅.
Using the identity

R(λ, S̄)S̄x̄ = λR(λ, S̄)x̄− x̄ for λ ∈ V, |λ| ≠ 1

we have

R(λ, S̄)(Px̄+ F̄ ) = R(λ, S̄)S̄x̄ = λR(λ, S̄)x̄− x̄.

Together with the fact that R(λ, S̄)Px̄ = PR(λ, S̄)x̄ we obtain

x̄+R(λ, S̄)F̄ = λR(λ, S̄)x̄− PR(λ, S̄)x̄

= (λ− P)R(λ, S̄)x̄.

Since λ ∈ V , the operator λ− P is invertible and its inverse is determined by
R(λ,P). Therefore, for all λ ∈ V such that |λ| ≠ 1 we have

R(λ, S̄)x̄ = R(λ,P)(x̄+R(λ, S̄)F̄ ).
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Since R(λ,P)x̄ is analytic in V and R(λ, S̄)F̄ is analytically extendable in a
neighborhood of λ0, the complex function R(λ, S̄)x̄ is analytically extendable
to a neighborhood of λ0. That is λ0 /∈ σ(x). This proves (4), completing the
proof of the lemma. □

Theorem 3.6. Let (M1)-(M3) be satisfied. Let σΓ(P ) ⊂ {1} and x ∈ BC(R+,
X0) be an asymptotic mild solution of (1). Furthermore, let f ∈ BC(R+, X)
in (1) be asymptotic 1-periodic. Then, x(·) is asymptotic 1-periodic, i.e.,

lim
t→∞

(x(t+ 1)− x(t)) = 0.

Proof. Since f is asymptotic 1-periodic,

σ(f) ⊂ {1}.
By Lemma 3.5,

σ(x) ⊂ σΓ(P ) ∪ σ(f) ⊂ {1}.
Then, by Proposition 3.2 we conclude that x(·) is asymptotic 1-periodic. □

3.3. Example

To illustrate our results, we consider the following nondensely defined nonau-
tonomous partial differential equation

(6)


∂x

∂t
(t, ζ)=

∂2

∂ζ2
x(t, u)−b(t)x(t, ζ)+g(ζ) · sin

√
t for t∈R+, ζ∈ [0, π],

x(t, 0) = x(t, π) = 0 for t ∈ R+,

where b(·) is a 1-periodic function which satisfies 0 < b̄ < b(·) and g is L2-
integrable on [0, π].

We set X := C([0, π],R), the Banach space of continuous functions on [0, π],
equipped with the uniform norm topology, and we define A : D(A) ⊂ X → X
by {

D(A) =
{
z ∈ C2([0, π],R) : z(0) = z(π) = 0

}
,

Az = z′′.

We have (0,∞) ⊂ ρ(A),

∥R(λ,A)∥ ≤ 1

λ
, ∀ λ > 0,

and

X0 := D(A) = {y ∈ C([0, π],R) : y(0) = y(π) = 0} ≠ X.

Hence, (M1) is satisfied. We will use the fact that A generates a strongly
continuous exponentially semigroup (T0(t))t≥0 on X0 with

∥T0(t)∥ ≤ e−t, ∀ t ≥ 0.

Moreover, as in [19, p. 414] the eigenvalues of A on iR are determined from
the set of solutions of the equations

λ− 1 = −n2, n = 1, 2, . . . .
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Obviously, there is only one root λ = 0 that lies on iR, so σ(A) ∩ iR = {0}.
Since this semigroup is compact, the spectral mapping theorem yields that
σ(T0(1)) = eσ(A) = {1}.

We now consider the family (B(t))t≥0 defined on X0 by B(t) = −b(t)I for
every t ≥ 0. Since b(·) ∈ L1

loc (R+), t 7→ B(t)x is strongly measurable. Hence,
(M2) is satisfied. Clearly that B(·) is 1-periodic so (M3) is fulfilled. We find
that A + B(t) generates a unique 1-periodic strongly continuous evolutionary
process (UB(t, s))t≥s≥0 on X0 defined by

UB(t, s) = exp

(
−
∫ t

s

b(τ)dτ

)
T0(t− s).

For the monodromy operator P = UB(1, 0) = exp
(
−
∫ 1

0
b(τ)dτ

)
T0(1) we have

σΓ(P ) = {1}.
Furthermore, if we assume that g ∈ X, then the function f(t) := sin

√
t · g(·) is

an asymptotic 1-periodic function taking values in X .
Therefore, by applying Theorem 3.6 we conclude that every asymptotic so-

lution to (6) is asymptotic 1-periodic.

Acknowledgment. The authors would like to thank the anonymous refer-
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manuscript.
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[17] W. M. Ruess and V. Q. Phóng, Asymptotically almost periodic solutions of evolution

equations in Banach spaces, J. Differential Equations 122 (1995), no. 2, 282–301. https:
//doi.org/10.1006/jdeq.1995.1149

[18] J. B. Serrin Jr., A note on the existence of periodic solutions of the Navier-Stokes

equations, Arch. Rational Mech. Anal. 3 (1959), 120–122. https://doi.org/10.1007/
BF00284169

[19] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential

equations, Trans. Amer. Math. Soc. 200 (1974), 395–418. https://doi.org/10.2307/
1997265

[20] W. Zhang, D. Zhu, and P. Bi, Existence of periodic solutions of a scalar functional

differential equation via a fixed point theorem, Math. Comput. Modelling 46 (2007),
no. 5-6, 718–729. https://doi.org/10.1016/j.mcm.2006.12.026

Le Anh Minh

Department of Mathematical Analysis
Hong Duc University

Thanh Hoa City, Vietnam

Email address: leanhminh@hdu.edu.vn

Nguyen Ngoc Vien

Faculty of Foundations
Hai Duong University

Hai Duong City, Vietnam

Email address: uhdviennguyen.edu@gmail.com

https://doi.org/10.1016/j.jmaa.2015.07.059
https://doi.org/10.1142/9789812818249
https://doi.org/10.1016/j.jde.2022.05.010
https://doi.org/10.1016/j.jde.2021.05.053
https://doi.org/10.1090/proc/15722
https://doi.org/10.1016/j.jde.2009.02.014
https://doi.org/10.1007/BFb0099195
https://doi.org/10.1006/jdeq.1995.1149
https://doi.org/10.1006/jdeq.1995.1149
https://doi.org/10.1007/BF00284169
https://doi.org/10.1007/BF00284169
https://doi.org/10.2307/1997265
https://doi.org/10.2307/1997265
https://doi.org/10.1016/j.mcm.2006.12.026

