
Commun. Korean Math. Soc. 38 (2023), No. 4, pp. 1091–1100

https://doi.org/10.4134/CKMS.c220362

pISSN: 1225-1763 / eISSN: 2234-3024

REMARKS ON THE GRADIENT FLOW OF α ENERGY

POTENTIAL ON THE LINE

Hyojun An and Hyungjin Huh

Abstract. We are interested in the gradient flow of α energy potential.

We provide basic estimates and study asymptotic behaviors for the case
N = 2, . . . , 5.

1. Introduction

In this work, we study the gradient flow of the following α energy potential

(1) Vα(X) :=



N∑
i=1

1

2
x2
i +

1

2α

∑
1≤i<k≤N

1

|xi − xk|2α
for α = 1, 2, . . . ,

N∑
i=1

1

2
x2
i −

∑
1≤i<k≤N

1

2
log |xi − xk|2 for α = 0,

where xk ∈ R and X = {x1, x2, . . . , xN}.
The log-gas system [11] is given by the following Hamiltonian

HL =

N∑
i=1

1

2
p2i +

N∑
i=1

1

2
x2
i −

∑
1≤i<k≤N

1

2
log |xi − xk|2,

where (x1, x2, . . . , xN ) and (p1, p2, . . . , pN ) = (dx1

dt ,
dx2

dt , . . . ,
dxN

dt ) are positions
and momenta of N particles, respectively. The particles in the log-gas system
are described via a logarithmic interaction potential and confined in a harmonic
trap. The Hamiltonian of the Calogero-Moser system [4–6,10] is given by

HCM =

N∑
i=1

1

2
p2i +

N∑
i=1

1

2
x2
i +

∑
1≤i<k≤N

1

2

1

|xi − xj |2
.
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Here we consider the initial value problem of the gradient flow associated
with the potential Vα:

(2)
dX
dt

= −∇XVα(X), X(0) = X0, t > 0,

which can be rewritten as

dxi

dt
=

∑
k ̸=i

1

(xi − xk)2α+1
− xi, i = 1, 2, . . . , N,

xi(0) = x0
i ,

(3)

where we denote
∑

k ̸=i fk = f1 + · · ·+ fi−1 + fi+1 + · · ·+ fN . It is enough to

consider the case of x0
1 < x0

2 < · · · < x0
N .

We investigate asymptotic behaviors of the solution to (3). Note that the
study of HL and HCM leads us to the second order differential equations while
(3) is the system of first order ODEs. Moreover, α energy potential (1) gener-
alizes the potentials of HL (α = 0) and HCM (α = 1). Some special solutions
of (3) with α = 0 were studied in [2, 3, 12]. In particular, it was proved in [3]
that the ODEs (3) with α = 0 admit unique global solutions.

In Section 2, we prove Propositions 2.1 and 2.2. The estimate (5) and
Proposition 2.1 exclude the possibility of |xk+1(t) − xk(t)| → 0 as t → t0
for some k and t0 > 0. Therefore the solution to (3) exists for all t > 0.

Proposition 2.2 tells us that the center of mass M(t) := 1
N

∑N
i=1 xi(t) converges

to 0 exponentially and M(t) = 0 is an invariant space. In Sections 3 and 4,
we study the case of N = 2, . . . , 5 and investigate the asymptotic behaviors of
solutions more precisely.

2. Basic properties and results

First of all, we will show that a collision of particles does never happen for
the initial data x0

1 < x0
2 < · · · < x0

N . For the solution of the gradient flow (2),
it is easy to check that

Vα(X)(t) ≤ Vα(X)(0).(4)

Then we can derive from (4), for α ≥ 1,

|xi − xk|2α(t) ≥
1

2αVα(X)(0)
,(5)

which excludes the possibility of |xk+1(t) − xk(t)| → 0 as t → t0 for some k
and t0 > 0.

For α = 0, we have

− log
(
Π1≤i<k≤N |xi − xk|

)
≤ Vα(X)(0),

which implies that

Π1≤i<k≤N |xi − xk| ≥ e−Vα(X)(0).
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In this case, we can not exclude the possibility of |xk+1(t) − xk(t)| → 0 as
t → t0 for some k and t0 > 0. We define

ε(t) := min
k=1,...,N−1

(xk+1 − xk)(t).

Proposition 2.1. Let xj be the solution of (3) with α = 0. For the initial
data satisfying x0

1 < x0
2 < · · · < x0

N , we have x1(t) < x2(t) < · · · < xN (t) for
all t ≥ 0. More precisely, we obtain

dε(t)

dt
≥ 4

Nε(t)
− ε(t).

Therefore, we have dε
dt > 0 when ε(t) < 2√

N
.

Proof. Let ε(t) = min
k=1,...,N−1

(xk+1 − xk)(t) = xi+1 − xi for some i. Then we

have

d

dt
(xi+1 − xi)

=
∑

k ̸=i+1

1

xi+1 − xk
−
∑
k ̸=i

1

xi − xk
− (xi+1 − xi)

=
∑

k ̸=i+1
k ̸=i

(
1

xi+1 − xk
− 1

xi − xk

)
+

1

xi+1 − xi
− 1

xi − xi+1
− ε

=
∑
k<i

{
xi − xi+1

(xi+1 − xk)(xi − xk)

}
+

∑
k>i+1

{
xi − xi+1

(xi+1 − xk)(xi − xk)

}
+

2

ε
− ε.

Since |xi − xk| ≥ |i− k|ε, we have∑
k<i

{
−ε

(xi+1 − xk)(xi − xk)

}
≥

∑
k<i

−ε

(i+ 1− k)ε(i− k)ε

= −1

ε

∑
k<i

{
1

i− k
− 1

i+ 1− k

}
= −1

ε

(
1− 1

i

)
,

and ∑
k>i+1

{
−ε

(xi+1 − xk)(xi − xk)

}
≥

∑
k>i+1

−ε

(k − i− 1)ε(k − i)ε

= −1

ε

∑
k>i+1

{
1

k − i− 1
− 1

k − i

}
= −1

ε

(
1− 1

N − i

)
.
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Then we arrive at

dε

dt
(t) ≥ − 1

ε(t)

(
1− 1

i

)
− 1

ε(t)

(
1− 1

N − i

)
+

2

ε(t)
− ε(t)

=
1

ε(t)

(
N

i(N − i)

)
− ε(t)

≥ 1

ε(t)

(
4

N

)
− ε(t).

We have d
dt (xi+1 − xi) =

dε
dt > 0 when ε(t) < 2√

N
. Therefore it is impossible

to have xk+1(t)− xk(t) → 0 as t → t0 for some k and t0 > 0. □

Let us consider the center of mass M(t) = 1
N

∑N
i=1 xi(t).

Proposition 2.2. Let xj be the solution of (3). Then the center of mass M
satisfies

dM

dt
+M = 0.(6)

Proof. Adding (3) for i = 1, 2, . . . , N and considering 1
(xi−xk)2α+1 +

1
(xk−xi)2α+1

= 0, we derive (6). □

Remark 2.3. The equation (6) can be solved by M(t) = M(0)e−t. So the
center of mass M(t) converges to 0 exponentially. Also we have an invariant

space M(t) = 0 which implies
∑N

i=1 xi(t) = 0 for the initial data satisfying∑N
i=1 x

0
i = 0.

We introduce the diagonally dominant matrix and its properties. We refer
to [8] for more information.

Definition. A square matrix is said to be diagonally dominant if, for every
row of the matrix, the magnitude of the diagonal entry is larger than or equal
to the sum of the magnitudes of all the other (non-diagonal) entries in that
row. More precisely, the matrix A is diagonally dominant if

|aii| ≥
∑
j ̸=i

|aij | for all i,

where aij denotes the entry in the i-th row and j-th column. If a strict in-
equality (>) is used, this is called strictly diagonally dominant matrix.

It is known that a symmetric strictly diagonally dominant matrix with pos-
itive diagonal entries is positive definite. We can check that

∂i∂jVα(X) =

{
1 + (2α+ 1)

∑
k ̸=i

1
(xi−xk)2α+2 for i = j,

−(2α+ 1) 1
(xi−xj)2α+2 for i ̸= j.

Therefore the Hessian of Vα is a strictly diagonally dominant matrix with pos-
itive entries on the diagonal. This implies that it is positive definite and thus
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Vα is strictly convex. This implies that all the trajectories of its gradient flow
converge exponentially fast to the equilibrium. More precisely, we have, for
any solution xj(t), the following bound

|X(t)− Xe| ≤ c1e
−c2t|X(0)− Xe|,

where Xe is the equilibrium point and c1, c2 are positive constants. By the
equilibrium point we mean the only one in each connected component of the
domain.

We finish this section by noting equilibrium points of (3). It is well known
that the equilibrium points of (3) with α = 0 are given by zeros of the Hermite
polynomials [7, 9]. This one is the unique global minimizer of V0(X) up to
symmetry and an asymptotically stable equilibrium point of the ODEs (3)
with α = 0. It is also known in [1] that zeros of the Hermite polynomials are
included in the equilibrium points of (3) with α = 1.

3. The cases of N = 2 and N = 3

We study the cases of N = 2, 3 and investigate the asymptotic behaviors of
solutions more precisely.

3.1. N = 2

The equations (3) read as for N = 2

dx1

dt
=

1

(x1 − x2)2α+1
− x1,

dx2

dt
=

1

(x2 − x1)2α+1
− x2.

Then we have

d

dt
(x2 − x1) =

2

(x2 − x1)2α+1
− (x2 − x1),

which is solved by

(x2 − x1)
2α+2(t) = 2 +

(
(x0

2 − x0
1)

2α+2 − 2
)
e−(2α+2)t.

Note that x0
2 − x0

1 > 0. On the other hand, we have from the equation (6)

(x1 + x2)(t) = (x0
1 + x0

2)e
−t.

Then we have

x1(t) → −2−
2α+1
2α+2 and x2(t) → 2−

2α+1
2α+2

as t → ∞.
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3.2. N = 3

The equations (3) read as for N = 3

dx1

dt
=

1

(x1 − x2)2α+1
+

1

(x1 − x3)2α+1
− x1,

dx2

dt
=

1

(x2 − x1)2α+1
+

1

(x2 − x3)2α+1
− x2,

dx3

dt
=

1

(x3 − x1)2α+1
+

1

(x3 − x2)2α+1
− x3.

(7)

With the notation x = x2 − x1 and y = x3 − x2, we can derive from (7)

dx

dt
+ x =

2

x2α+1
− 1

y2α+1
+

1

(x+ y)2α+1
,

dy

dt
+ y =

2

y2α+1
− 1

x2α+1
+

1

(x+ y)2α+1
,

(8)

where we use x3 − x1 = y + x. Then we can derive

d

dt
(x− y) + x− y +

3(x2α+1 − y2α+1)

(xy)2α+1
= 0.(9)

Note that (x− y)(t) = 0 is an invariant subspace of (9).
For the initial data satisfying x(0) = y(0), the system (8) reduces to

dx

dt
+ x =

(
1 +

1

22α+1

)
1

x2α+1

from which we have x →
(
1 + 1

22α+1

) 1
2α+2 as t → ∞.

It is easy to show that (x − y)(t) ̸= 0 if (x − y)(0) ̸= 0. Without loss of
generality, we assume that (x− y)(t) > 0. Since

x2α+1 − y2α−1

(xy)2α+1
=

(x− y)(x2α + x2α−1y + · · ·+ xy2α−1 + y2α)

x2α+1y2α+1

= (x− y)

{
1

xy2α+1
+

1

x2y2α
+ · · ·+ 1

x2α+1y

}
:= (x− y)P (t),

the equation (9) can be rewritten as

d

dt
(x− y) + (1 + 3P (t)) (x− y) = 0.

Then we have

0 < (x− y)(t) = (x0 − y0)e
−

∫ t
0
(1+3P (s))ds.

Noting that P (s) ≥ 0, we have x− y → 0 as t → ∞ which implies that

x1 − 2x2 + x3 → 0.



REMARKS ON THE GRADIENT FLOW OF α ENERGY 1097

We also know from Proposition 2.2 that

x1 + x2 + x3 → 0 as t → ∞.

Then we have, as t → ∞,

x1 + x3 → 0 and x2 → 0.

Let us consider the case of x1 = −x3 and x2 = 0. Then the system (7) reduces
to

dx3

dt
=

(
1 +

1

22α+1

)
1

x2α+1
3

− x3,

from which we have x3 →
(
1 + 1

22α+1

) 1
2α+2 as t → ∞.

4. The cases of N = 4 and N = 5

For N = 2m, we consider the case of xk = −x2m−k+1 for k = 1, 2, . . . ,m.
Then (3) reduces to the system of ODEs consisting of xm+1, . . . , x2m. For N =
2m+1, we consider the case of xk = −x2m−k+2 for k = 1, 2, . . . ,m and xm+1 =
0. Then (3) reduces to the system of ODEs consisting of xm+2, . . . , x2m+1.

4.1. N = 4

We consider the cases of x1 = −x4, x2 = −x3. Then (3) reduces to the
system of ODEs consisting of x = x3, y = x4.

dx

dt
=

1

(x− y)2α+1
+

1

(x+ y)2α+1
+

1

(2x)2α+1
− x,

dy

dt
=

1

(y − x)2α+1
+

1

(x+ y)2α+1
+

1

(2y)2α+1
− y.

(10)

Note that 0 < x < y. Then we have

d

dt
(y − x) =

2

(y − x)2α+1
+

1

22α+1

(
1

y2α+1
− 1

x2α+1

)
− (y − x).

Since y − x > 0, we have

d

dt
(y − x) <

2

(y − x)2α+1
− (y − x),

which implies

0 < e(2α+2)t(y − x)2α+2(t) < (y − x)2α+2(0) + 2e(2α+2)t − 2.

Then we have 0 < y − x ≤ 2
1

2α+2 as t → ∞.
To study more precise behaviors of solutions to (10), we consider the case

of α = 0. Then the equations (10) become

dx

dt
=

1

x− y
+

1

x+ y
+

1

2x
− x,

dy

dt
=

1

y − x
+

1

x+ y
+

1

2y
− y.

(11)
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To find equilibrium points, we have from the right hand sides of (11)

5x2 − y2 = 2x2(x2 − y2) and 5y2 − x2 = 2y2(y2 − x2),

from which we derive

2(x2 + y2) = (y2 − x2)2 and 3(y2 − x2) = (y2 − x2)(y2 + x2).

Then we have y2 + x2 = 3 and y2 − x2 =
√
6. Note that 0 < x < y. To study

the behaviors of y2 + x2 and y2 − x2, we can derive from (11)

dX

dt
= 6− 2X,

dY

dt
=

4X

Y
− 2Y,

(12)

where X = x2 + y2 and Y = y2 − x2. The solutions of (12) are given by

X(t) = e−2t
(
X(0) + 3e2t − 3

)
,

e4tY 2(t) = Y 2(0) +

∫ t

0

8e4sX(s)ds.

Then we can conclude that

X(t) → 3 and Y (t) →
√
6 as t → ∞.

4.2. N = 5

We consider the cases of x1 = −x5, x2 = −x4 and x3 ≡ 0. Then (3) reduces
to the system of ODEs consisting of x = x4, y = x5.

dx

dt
=

1

(x− y)2α+1
+

1

(x+ y)2α+1
+

(
1 +

1

22α+1

)
1

x2α+1
− x,

dy

dt
=

1

(y − x)2α+1
+

1

(x+ y)2α+1
+

(
1 +

1

22α+1

)
1

y2α+1
− y.

(13)

Note that 0 < x < y. For α = 0, the equations (13) become

dx

dt
=

1

x− y
+

1

x+ y
+

3

2x
− x,

dy

dt
=

1

y − x
+

1

x+ y
+

3

2y
− y.

(14)

Then the equilibrium of (14) is a root of the following equations.

2x2 +
3

2
(x2 − y2)− x2(x2 − y2) = 0,

2y2 +
3

2
(y2 − x2)− y2(y2 − x2) = 0,

which implies

2(x2 + y2)− (x2 − y2)2 = 0,

5(x2 − y2)− (x2 − y2)(x2 + y2) = 0.
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Therefore we have x2 + y2 = 5 and y2 − x2 =
√
10. We also derive from (14)

dX

dt
= 10− 2X,

dY

dt
=

4X

Y
− 2Y,

where X = x2 + y2 and Y = y2 − x2. Then we can derive that

X(t) → 5 and Y (t) →
√
10 as t → ∞.
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