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A VARIANT OF WILSON’S FUNCTIONAL EQUATION ON

SEMIGROUPS

Youssef Aserrar, Abdellatif Chahbi, and Elhoucien Elqorachi

Abstract. Let S be a semigroup. We determine the complex-valued

solutions of the following functional equation

f(xy) + µ(y)f(σ(y)x) = 2f(x)g(y), x, y ∈ S,

where σ : S → S is an automorphism, and µ : S → C is a multiplicative
function such that µ(xσ(x)) = 1 for all x ∈ S.

1. Introduction

Stetkær [9] solved the variant of d’Alembert’s functional equation

f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S,

on a semigroup S, where σ : S → S is an involutive automorphism, i.e.,
σ(xy) = σ(x)σ(y) and σ(σ(x)) = x for all x, y ∈ S. The solutions are abelian
and are of the form f = χ+χ◦σ

2 , where χ : S → C is a multiplicative function.
In [5], Elqorachi and Redouani determined the complex-valued solutions of the
variant of Wilson’s functional equation

(1.1) f(xy) + µ(y)f(σ(y)x) = 2f(x)g(y), x, y ∈ G,

where G is a group, and µ : S → C is a multiplicative function such that
µ(xσ(x)) = 1 for all x ∈ G. Fadli et al. [6] obtained the solutions of (1.1)
with µ = 1 on groups. Their results were extended to the case that σ is an
automorphism not necessarily involutive by Sabour [7]. In a recent paper [2],
Ajebbar and Elqorachi solved (1.1) on semigroups generated by their squares.
Ebanks [4] solved the partially Pexiderized d’Alembert-type equation

f(xσ(y)) + h(τ(y)x) = 2f(x)k(y), x, y ∈ M,

for four unknown functions f, g, h, k : M → C, where σ, τ : M → M are
involutive automorphisms on monoids that are neither regular nor generated
by their squares. There are some results about solutions of (1.1) with µ = 1
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on abelian groups in the literature. See [1] and [8] for further contextual and
historical discussion.

Our attention was drawn to (1.1) because in its solutions on groups and
semigroups, the sine addition law

(1.2) f(xy) = f(x)g(y) + f(y)g(x), x, y ∈ S,

plays an important role, and in the recent papers [3,4] by Ebanks, the solutions
of (1.2) are described in a general semigroup.

The contributions of the present paper to the knowledge about solutions of
(1.1) are the following:

(1) The setting has S to be a semigroup not necessarily generated by its
squares.

(2) The automorphism σ : S → S is not necessarily involutive.
(3) We relate the solutions of (1.1) to the sine addition law (1.2), and we find

explicit formulas for the solutions, expressing them in terms of multiplicative,
additive and sometimes arbitrary functions.

Our notation and notions are described in the following section.

2. Notations and terminology

Throughout this paper S denotes a semigroup. If S is a topological semi-
group, C(S) denotes the algebra of continuous functions from S into C.

A function f on S is additive if f(xy) = f(x) + f(y) for all x, y ∈ S.
A function f on S is multiplicative if f(xy) = f(x)f(y) for all x, y ∈ S.
A function f on S is central if f(xy) = f(yx) for all x, y ∈ S, and f is

abelian if f is central and f(xyz) = f(xzy) for all x, y, z ∈ S.
The map σ : S → S denotes an automorphism and µ : S → C is a multi-

plicative function such that µ(xσ(x)) = 1 for all x ∈ S. For any subset T ⊆ S
define T 2 := {xy |x, y ∈ T}. If χ : S → C is a non-zero multiplicative function,
define the sets

Iχ := {x ∈ S |χ(x) = 0},
Pχ := {p ∈ Iχ\I2χ |up, pv, upv ∈ Iχ\I2χ for all u, v ∈ S\Iχ}.

For any function f : S → C, define f∗ : S → C by f∗(x) := µ(x)f(σ(x)) for all

x ∈ S, and the functions fe := f+f∗

2 , f◦ := f−f∗

2 .

3. Main result

In the following lemma we give some key properties of solutions of (1.1).

Lemma 3.1. Let f, g : S → C be a solution of (1.1). For all a ∈ S, define the
function fa : S → C by fa(x) = f(ax)− f(a)g(x) for all x ∈ S. The following
statements hold:

(1) fa(xy) = fa(x)g(y) + fa(y)g(x) for all a, x, y ∈ S, and hence fa and g
are abelian, in particular central.

(2) f◦(xy) = f(x)g(y)− f∗(y)g(x) for all x, y ∈ S.
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(3) f(xy) = 2f(x)g(y) + 2f(y)g(x)− 4fe(y)g(x) + f∗(xy) for all x, y ∈ S.
(4) If f is central and g ̸= 0, then fe and g are linearly dependent.
(5) If fe and g are linearly independent, then there exist two functions

h1, h2 : S → C such that

g(xy) = f(x)h1(y) + g(x)h2(y) for all x, y ∈ S.

(6) If g is a non-zero multiplicative function, then there exists a function
h : S → C such that

f(xy) = f(x)g(y) + g(x)h(y) for all x, y ∈ S.

Proof. (1) Let a, x, y ∈ S be arbitrary. We use similar computations to those
of [9]. We apply (1.1) to the pair (ax, y), we obtain

f(axy) + µ(y)f(σ(y)ax) = 2f(ax)g(y).

Now if we apply (1.1) to the pair (σ(y)a, x) and multiply the identity obtained
by −µ(y) we get

−µ(y)f(σ(y)ax)− µ(xy)f(σ(x)σ(y)a) = −2µ(y)f(σ(y)a)g(x).

By applying (1.1) to the pair (a, xy), we get

f(axy) + µ(xy)f(σ(x)σ(y)a) = 2f(a)g(xy).

By adding these three identities, we obtain

f(axy) = f(a)g(xy) + f(ax)g(y) + g(x)[f(ay)− 2f(a)g(y)].

Since a, x, y are arbitrary, we deduce that for all a ∈ S the pair (fa, g) satisfies
the sine addition law

(3.1) fa(xy) = fa(x)g(y) + fa(y)g(x), x, y ∈ S.

According to [4, Theorem 3.1] we deduce that fa and g are abelian, in particular
central. This is the case (1).

(2) By applying (1.1) to the pair (σ(y), x) and multiplying the identity ob-
tained by −µ(y) we get

(3.2) −µ(y)f(σ(y)x)− f∗(xy) = −2f∗(y)g(x).

By adding (3.2) to (1.1) we obtain

(3.3) f(xy)− f∗(xy) = 2f(x)g(y)− 2f∗(y)g(x).

This implies that

(3.4) f◦(xy) = f(x)g(y)− f∗(y)g(x).

This is the result (2) of Lemma 3.1.
(3) The identity (3.3) implies that

f(xy) = 2f(x)g(y)− 2f∗(y)g(x) + f∗(xy).

Since f∗ = 2fe − f , we get

f(xy) = 2f(x)g(y)− 2(2fe(y)− f(y))g(x) + f∗(xy).
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So

(3.5) f(xy) = 2f(x)g(y) + 2f(y)g(x)− 4fe(y)g(x) + f∗(xy).

This occurs in part (3).
(4) Suppose that f is central. Since σ is an automorphism, we can see that

f∗ is central. So, taking this into account in the identity (3.5) we deduce that

−4fe(y)g(x) = −4fe(x)g(y) for all x, y ∈ S.

Since g ̸= 0, we get that fe = cg for some constant c ∈ C. This is part (4).
(5) Suppose that fe and g are linearly independent. Using the associativity

of the semigroup operation, we can compute f◦(xyz) first as f◦(x(yz)) and
then as f◦((xy)z) using the identity (3.4) and compare the results. We obtain

(3.6) f(xy)g(z)− f∗(z)g(xy) = f(x)g(yz)− f∗(yz)g(x).

Since f = fe + f◦ and f∗ = fe − f◦ then by using the identity (3.4) we get

f(xy) = fe(xy) + f◦(xy) = fe(xy) + f(x)g(y)− f∗(y)g(x)

and
f∗(yz) = fe(yz)− f◦(yz) = fe(yz)− f(y)g(z) + f∗(z)g(y).

Substituting the last two identities in (3.6) we get after some rearrangement

g(z) [g(x)fe(y)− fe(xy)] + f∗(z) [g(xy)− g(x)g(y)]

= f(x) [g(y)g(z)− g(yz)] + g(x) [fe(yz)− fe(y)g(z)] .

Furthermore, if f∗ and g are linearly dependent, then since g is central, we
get that f∗ is central. Therefore f is central, since σ is an automorphism. So,
according to (4), we deduce that fe and g are linearly dependent. This is a
contradiction. So f∗ and g are linearly independent. By fixing z = z1 and
z = z2 such that g(z1)f

∗(z2)−g(z2)f
∗(z1) ̸= 0 in the identity above, we obtain

two equations from which we get

(3.7) g(xy) = f(x)h1(y) + g(x)h2(y),

for some functions h1, h2 : S → C. This occurs in (5).
(6) Suppose that g is a non-zero multiplicative function. Eq. (3.6) becomes

f(xy)g(z)− f∗(z)g(x)g(y) = f(x)g(y)g(z)− f∗(yz)g(x).

This implies that

(3.8) g(z) (f(xy)− f(x)g(y)) = g(x) (f∗(z)g(y)− f∗(yz)) .

By fixing z = z0 such that g(z0) ̸= 0 in (3.8) we deduce that

(3.9) f(xy) = f(x)g(y) + g(x)h(y)

for some function h : S → C. This is part (6). This completes the proof of
Lemma 3.1. □

In the following lemma we give some properties of the subsets Pχ and Iχ\Pχ

when χ is σ-invariant (see [3, Lemma 4.1]).
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Lemma 3.2. Let χ : S → C be a non-zero multiplicative function such that
χ ◦ σ = χ, where σ : S → S is an automorphism. Then

(1) σ(Pχ) ⊂ Pχ.
(2) σ(Iχ\Pχ) ⊂ Iχ\Pχ.

Proof. (1) Let x ∈ Pχ. Suppose that σ(x) /∈ Pχ, there exists y ∈ S\Iχ such that
σ(x)y ∈ I2χ. Since σ is an automorphism and χ = χ ◦ σ, there exists z ∈ S\Iχ
such that y = σ(z), so σ(x)y = σ(x)σ(z) = σ(a)σ(b) for some a, b ∈ Iχ.
Then xz = ab ∈ I2χ, which implies that x /∈ Pχ but this is a contradiction, so
σ(x) ∈ Pχ.

(2) For all x ∈ Iχ\Pχ, σ(x) ∈ Iχ since χ = χ◦σ. Suppose that σ(x) ∈ Pχ for
all y ∈ S\Iχ we have σ(x)y ∈ Iχ\I2χ. Since σ is an automorphism, there exists

z ∈ S\Iχ such that y = σ(z), so σ(x)y = σ(xz) ∈ Iχ\I2χ, then since χ = χ ◦ σ
we get that xz ∈ Iχ\I2χ. Since y is arbitrary, then z is also arbitrary. This
implies that x ∈ Pχ. This is a contradiction, so σ(x) ∈ Iχ\Pχ. This completes
the proof of Lemma 3.2. □

Now we are ready to solve the functional equation (1.1).

Theorem 3.1. The solutions f, g : S → C of the functional equation (1.1)
with g ̸= 0 are the following pairs:

(1) f = 0 and g ̸= 0 arbitrary.

(2) f = αχ + βχ∗ and g = χ+χ∗

2 , where χ : S → C is a non-zero multi-
plicative function and α, β ∈ C are constants such that (α, β) ̸= (0, 0).
In addition, if β ̸= 0, then χ ◦ σ2 = χ.

(3)

f =

χ(c+A) on S\Iχ,
0 on Iχ\Pχ,
ρ on Pχ,

and g = χ,

where c ∈ C is a constant, χ : S → C is a non-zero multiplicative function
and A : S\Iχ → C is an additive function such that χ∗ = χ and A ◦ σ = −A,
ρ : Pχ → C is the restriction of f to Pχ such that µρ ◦ σ = −ρ. In addition,
we have the following conditions:

(I) If x ∈ {up, pv, upv} for p ∈ Pχ and u, v ∈ S\Iχ, then x ∈ Pχ and we
have, respectively, ρ(x) = ρ(p)χ(u), ρ(x) = ρ(p)χ(v), or ρ(x) = ρ(p)χ(uv).

(II) f(xy) = f(yx) = 0 for all x ∈ S\Iχ and y ∈ Iχ\Pχ.
Note that, off the exceptional case (1), f and g are abelian.
Furthermore, off the exceptional case (1), if S is a topological semigroup and

f ∈ C(S), then g, χ, χ∗ ∈ C(S), A ∈ C(S\Iχ) and ρ ∈ C(Pχ).

Proof. We check by elementary computations that if f , g are of the forms (1)–
(3), then (f, g) is a solution of (1.1), so left is that any solution (f, g) of (1.1)
fits into (1)–(3).

Let f, g : S → C be a solution of (1.1). If f = 0, then g is arbitrary, so we
have the solution family (1). From now on we assume that f ̸= 0. According
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to Lemma 3.1(2) we have

(3.10) f◦(xy) = f(x)g(y)− f∗(y)g(x) for all x, y ∈ S.

Since f = fe + f◦ and f∗ = fe − f◦, Eq. (3.10) can be written as

(3.11) f◦(xy) = f◦(x)g(y) + f◦(y)g(x) + fe(x)g(y)− fe(y)g(x).

First case : fe and g are linearly dependent. There exists a constant c ∈ C
such that fe = cg. So, for all x, y ∈ S we have

fe(x)g(y)− fe(y)g(x) = cg(x)g(y)− cg(y)g(x) = 0.

Now, Eq. (3.11) becomes

(3.12) f◦(xy) = f◦(x)g(y) + f◦(y)g(x) for all x, y ∈ S.

According to [4, Theorem 3.1] and taking into account that g ̸= 0 we have the
following possibilities:

(1) f◦ = c1 (χ1 − χ2) and g = χ1+χ2

2 for some constant c1 ∈ C and χ1, χ2 :
S → C are two multiplicative functions such that χ1 ̸= χ2. So, since fe = cg,
we deduce that f = αχ1 + βχ2 for some constants α, β ∈ C. Substituting f
and g in the functional equation (1.1), we get after some simplification that

αχ1(x) [χ
∗
1(y)− χ2(y)] + βχ2(x) [χ

∗
2(y)− χ1(y)] = 0.

Since χ1 ̸= χ2, then according to [8, Theorem 3.18] we get that{
αχ1(x) [χ

∗
1(y)− χ2(y)] = 0,

βχ2(x) [χ
∗
2(y)− χ1(y)] = 0

for all x, y ∈ S. Since f ̸= 0, then at least one of α and β is not zero.
(i) If α ̸= 0 and β = 0, we deduce that χ1 ̸= 0, and χ∗

1(y) = χ2(y) for all
y ∈ S. The result occurs in part (2) with β = 0 and χ1 = χ.

(ii) If α ̸= 0 and β ̸= 0. Suppose that χ1 = 0, then χ2 ̸= 0, so χ1 = χ∗
2 ̸= 0.

This is a contradiction. Thus χ1 ̸= 0, χ∗
1 = χ2, and χ∗

2 = χ1. Now if we put
χ = χ1 we have χ∗ = χ2 and χ ◦ σ2 = χ. This occurs in case (2).

(iii) If α = 0 and β ̸= 0, then χ2 ̸= 0, and χ∗
2(y) = χ1(y) for all y ∈ S.

This occurs in part (2) with α = 0, χ1 = χ and χ2 = χ∗. In addition, χ∗
2 = χ1

implies that χ ◦ σ2 = χ.
(2)

f◦ =

χA on S\Iχ,
0 on Iχ\Pχ,
ρ on Pχ,

and g = χ,

where χ : S → C is a non-zero multiplicative function and A : S\Iχ → C is
an additive function, ρ : Pχ → C is a function satisfying condition (I), and
f◦ satisfies condition (II). Since fe = cχ = 0 on Iχ, then f = f◦ on Iχ, so f
satisfies condition (II). Since f = f◦ + fe = f◦ + cg, we obtain

f =

χ(c+A) on S\Iχ,
0 on Iχ\Pχ,
ρ on Pχ.
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By applying the identity (3.10) to the pair (σ(y), x) and multiplying the identity
obtained by µ(y), we get

(3.13) µ(y)f◦(σ(y)x) = f∗(y)g(x)− f∗(x)g∗(y).

By adding (3.13) to (3.10), we get that

(3.14) f◦(xy) + µ(y)f◦(σ(y)x) = f(x)g(y)− f∗(x)g∗(y).

Now, by subtracting (3.14) from (1.1) we get

fe(xy) + µ(y)fe(σ(y)x) = f(x)g(y) + f∗(x)g∗(y).

Since fe = cχ, we deduce that

cχ(x)χ(y) + cχ(x)χ∗(y) = f(x)χ(y) + f∗(x)χ∗(y).

This implies that

(3.15) χ(y) [cχ(x)− f(x)] + χ∗(y) [cχ(x)− f∗(x)] .

If χ ̸= χ∗, we get from (3.15) since χ and χ∗ are non-zero that

f(x) = cχ(x) and f∗(x) = cχ(x)

for all x ∈ S. Since f ̸= 0, we have c ̸= 0 and f∗ = cχ∗ = cχ, so χ = χ∗. This
is a contradiction. So χ = χ∗, and the functional equation (1.1) implies that

χ(xy) (c+A(xy)) + µ(y)χ(σ(y)x) (c+A(σ(y)x)) = 2χ(y)χ(x) (c+A(x))

for all x, y ∈ S\Iχ. Since A is additive and χ(xy) ̸= 0, the identity above
reduces to A ◦ σ = −A. For x ∈ S\Iχ and y ∈ Pχ we have xy ∈ Pχ and by
Lemma 3.2(1) we get σ(y) ∈ Pχ, so σ(y)x ∈ Pχ, then Eq. (1.1) can be written
as

ρ(y)χ(x) + µ(y)ρ ◦ σ(y)χ(x) = 0,

which implies that µρ ◦ σ = −ρ since χ ̸= 0. Now, if y ∈ Iχ\Pχ, then by
Lemma 3.2(2) we get σ(y) ∈ Iχ\Pχ. It follows from condition (II) that f(xy) =
f(σ(y)x) = 0, so

f(xy) + µ(y)f(σ(y)x) = 0 = 2f(x)χ(y),

since χ(y) = 0. This is part (3) of Theorem 3.1.
Second case : fe and g are linearly independent. According to Lemma 3.1(5)
there exist two functions h1, h2 : S → C such that

(3.16) g(xy) = f(x)h1(y) + g(x)h2(y) for all x, y ∈ S.

According to Lemma 3.1(2), (fa, g) satisfies the sine addition law (1.2). So we
have the following possibilities:
Subcase A : fa = 0 for all a ∈ S. That is f(xy) = f(x)g(y) for all x, y ∈ S.
According to the proof of [2, Theorem 4.2 (case 1)], this case leads to f = λχ
and g = χ, where χ : S → C is non-zero multiplicative function and λ ∈ C is
a constant. Thus, f is central. So, since g ̸= 0, we get according to Lemma
3.1(4) that fe and g are linearly dependent. This case does not occur.
Subcase B : fa ̸= 0 for some a ∈ S. There exist two multiplicative functions
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χ1, χ2 : S → C such that g = χ1+χ2

2 .
Subcase B.1 : χ1 ̸= χ2.
Subcase B.1.1 : h1 = 0. The identity (3.16) becomes

(3.17) g(xy) = g(x)h2(y) for all x, y ∈ S.

Since g is central and g ̸= 0, we deduce from (3.17) that h2 = bg for some
constant b ∈ C, so (3.17) can be written as

(3.18) g(xy) = bg(x)g(y) for all x, y ∈ S.

Since g = χ1+χ2

2 , we deduce from the identity (3.18) that

(3.19) (2− b) (χ1(xy) + χ2(xy)) = b (χ1(x)χ2(y) + χ1(y)χ2(x)) .

Since g ̸= 0, we can assume without loss of generality that χ2(y0) ̸= 0 for some
y0 ∈ S. Thus, if we put y = y0 in the identity (3.19) we obtain

(3.20) [(2− b)χ1(y0)− bχ2(y0)]χ1(x) + [(2− b)χ2(y0)− bχ1(y0)]χ2(x) = 0

for all x ∈ S. Since χ1 ̸= χ2, then by using [8, Theorem 3.18] we deduce from
(3.20) that

(3.21) [(2− b)χ1(y0)− bχ2(y0)]χ1 = 0,

(3.22) [(2− b)χ2(y0)− bχ1(y0)]χ2 = 0.

Suppose that b = 0, we get from (3.22) that χ2 = 0. This is a contradiction.
So b ̸= 0. Now, if b = 2, we get from (3.21) that χ1 = 0. That is g = χ2

2 . So
Eq. (3.6) implies that for all x, y, z ∈ S

(3.23) χ2(z) [f(xy)− χ2(y)f(x)] = χ2(x) [χ2(y)f
∗(z)− f∗(yz)] .

Since χ2(y0) ̸= 0, then by putting z = y0 in (3.23) we get that

(3.24) f(xy) = βχ2(xy) + χ2(x)k(y) + χ2(y)f(x) for all x, y ∈ S,

where k(y) = −f∗(yy0)
χ2(y0)

and β = f∗(y0)
χ2(y0)

∈ C. By applying the identity (3.24) to

the pair (σ(y), x) and multiplying the identity obtained by µ(y), we get

(3.25) µ(y)f(σ(y)x) = βχ∗
2(y)χ2(x) + χ∗

2(y)k(x) + χ2(x)f
∗(y), x, y ∈ S.

By adding (3.24) to (3.25), and taking into account that the pair (f, g) satisfies
(1.1), we get after some rearrangement

(3.26) χ2(x) [β(χ2(y) + χ∗
2(y)) + f∗(y) + k(y)] = −χ∗

2(y)k(x).

Since χ2(y0) ̸= 0, we deduce from (3.26) that f∗ + k = a1χ2 + a2χ
∗
2 for some

constants a1, a2 ∈ C. Taking this into account in (3.26), we get that

(3.27) χ2(x) [b1χ2(y) + b2χ
∗
2(y)] = −χ∗

2(y) [a1χ2(x) + a2χ
∗
2(x)− f∗(x)]

for some constants b1, b2 ∈ C. Since χ2(y0) ̸= 0, we deduce from (3.27) that
f∗ = c1χ2 + c2χ

∗
2, where c1, c2 ∈ C are constants. This implies that f∗ is

central, and then f is central since σ is an automorphism. So, according to
Lemma 3.1(4) fe and g are linearly dependent. This case does not occur.
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Therefore b ∈ C\{0, 2} and χ1 ̸= 0, so we get from Eq. (3.22) since χ2(y0) ̸= 0
that χ1(y0) =

2−b
b χ2(y0) ̸= 0. Taking this into account in (3.21), we obtain[

(2− b)2

b
− b

]
χ2(y0)χ1 = 0.

Since χ2(y0) ̸= 0 and χ1 ̸= 0, we get (2− b)2 − b2 = 0. So b = 1, and then we
deduce from (3.18) that g is a multiplicative function. That is χ1 = χ2 which
contradicts the assumption χ1 ̸= χ2. This case does not occur.
Subcase B.1.2 : h1 ̸= 0. There exists y0 ∈ S such that h1(y0) ̸= 0, so we get
from the identity (3.16) by putting y = y0 that

f(x) = d1g(xy0) + d2g(x) for all x ∈ S,

where d1, d2 ∈ C are constants. Since g = χ1+χ2

2 , where χ1, χ2 are multiplica-
tive functions, we deduce that f = e1χ1 + e2χ2 for some constants e1, e2 ∈ C.
This implies that f is central. Thus, according to Lemma 3.1(4) fe and g are
linearly dependent. This case does not occur.
Subcase B.2 : χ1 = χ2. In this case, g is a multiplicative function. So, accord-
ing to Lemma 3.1(5) there exists a function h : S → C such that

(3.28) f(xy) = f(x)g(y) + g(x)h(y) for all x, y ∈ S.

Subcase B.2.1 : h = 0. From (3.28) we deduce that f(xy) = f(x)g(y) for all
x, y ∈ S. This implies that fa = 0, which contradicts the assumption fa ̸= 0.
This case does not occur.
Subcase B.2.2 : h ̸= 0. If we put x = a in (3.28), we get fa(y) = g(a)h(y) for
all y ∈ S. In addition, fa ̸= 0 implies that g(a) ̸= 0, so h = 1

g(a)fa. Then h is

central, since fa is central. On the other hand, if we apply the identity (3.28)
to the pair (σ(y), x) and multiply the identity obtained by µ(y), we get

(3.29) µ(y)f(σ(y)x) = f∗(y)g(x) + g∗(y)h(x) for all x, y ∈ S.

By adding (3.28) to (3.29), and taking into account that (f, g) satisfies the
functional equation (1.1), we get

(3.30) f(x)g(y) = g(x) [h(y) + f∗(y)] + g∗(y)h(x) for all x, y ∈ S.

Since g ̸= 0, we deduce from (3.30) that

(3.31) f(x) = f1g(x) + f2h(x) for all x ∈ S,

for some constants f1, f2 ∈ C. Since g and h are central, we deduce from
(3.31) that f is central. Then, according to Lemma 3.1(4) fe and g are linearly
dependent. This case does not occur.

For the topological statements, suppose that f is continuous and f ̸= 0.
The continuity of g follows easily from the continuity of f and the functional
equation (1.1). Let y0 ∈ S such that f(y0) ̸= 0, we get from (1.1) that

g(x) =
f(xy0) + µ(y0)f(σ(y0)x)

2f(y0)
for x ∈ S.
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The functions x 7→ f(xy0) and x 7→ f(σ(y0)x) are continuous, since S is a topo-
logical semigroup so that the right translation x 7→ xy0 and the left translation
x 7→ σ(y0)x are continuous. Then g is continuous.

In case (2) we get the continuity of χ and χ∗ from the continuity of g by
the help of [8, Theorem 3.18]. For case (3) the function ρ is continuous by
restriction, since f is continuous. In addition, we have

χA = f − cχ on S\Iχ.
So g = χ is continuous. Thus A is continuous, since χ ̸= 0. This completes the
proof of Theorem 3.1. □

Remark 3.1. For a semigroup S such that S2 ̸= S, there exists a non-zero
function f such that

(3.32) f(xy) + µ(y)f(σ(y)x) = 0 for all x, y ∈ S.

Let S = {0, 1} and define the semigroup operation as xy = 0 for all x, y ∈ S.
We let σ(x) = x for all x ∈ S, and f be the function

f(x) =

{
0 if x = 0,
1 if x = 1,

so we can see that f satisfies (3.32).

4. Examples

In this section we give some examples of non-zero continuous solutions of
the functional equation (1.1) with µ = 1.

Example 4.1. Let G be the (ax+ b)–group defined by

G :=

{(
a b
0 1

)
| a > 0, b ∈ R

}
.

We consider the following automorphism on G

σ

(
a b
0 1

)
=

(
a 2b
0 1

)
,

so σ is not involutive. According to [8, Example 3.13], the continuous non-zero
multiplicative functions on G are of the form

χλ :

(
a b
0 1

)
7→ aλ,

where c, λ ∈ C. We can see that χλ ◦ σ = χλ. The only additive function A on
G such that A ◦ σ = −A is A = 0, so we deduce that the non-zero continuous
solutions of (1.1) are 

f :

(
a b
0 1

)
7→ αaλ,

g :

(
a b
0 1

)
7→ aλ,



A VARIANT OF WILSON’S FUNCTIONAL EQUATION ON SEMIGROUPS 1073

where α ∈ C\ {0} and λ ∈ C.

Example 4.2. Let S = (C,+) and σ(z) = 2z for all z ∈ C. The functional
equation (1.1) is written as

f(z + z′) + f(z + 2z′) = 2f(z)g(z′), z, z′ ∈ S.

The continuous characters on S are the functions of the form χ(z) = eaz, z ∈ C,
where a ∈ C. If A is additive on S such that A ◦ σ = −A, then A = 0. In
addition, χ = χ ◦ σ2 implies that χ = 1, so we deduce that the continuous
non-zero solutions of (1.1) are{

f(z) = αeaz,

g(z) = eaz+e2az

2 ,

where α ∈ C\ {0}.

Example 4.3. Let S = H3 be the Heisenberg group defined by

H3 =


1 x z
0 1 y
0 0 1

 | x, y, z ∈ R

 .

We consider the following automorphism

σ

1 x z
0 1 y
0 0 1

 =

1 x 2z
0 1 2y
0 0 1

 .

According to [8, Example 3.14], the continuous non-zero multiplicative func-
tions on S have the form

χ

1 x z
0 1 y
0 0 1

 = eax+by,

where a, b ∈ C. The only additive function A on S such that A ◦ σ = −A is
A = 0. On the other hand, χ ◦ σ2 = χ implies that χ = eax. So the continuous
non-zero solutions of Eq. (1.1) are

f :

1 x z
0 1 y
0 0 1

 7→ αeax+by,

g :

1 x z
0 1 y
0 0 1

 7→ eax+by+eax+2by

2 ,

where α ∈ C\ {0}.

Example 4.4. Let S = (]−1, 1[ , ·) and σ(x) = x for all x ∈ S. S is not
generated by its squares and if χ is a continuous multiplicative function on S,
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then χ have one of the forms

(4.1) χ = 1, χ(x) :=

{
|x|α for x ̸= 0,
0 for x = 0,

or χ(x) :=

{
|x|αsgn(x) for x ̸= 0,

0 for x = 0,

where α ∈ C has a positive real part. The non-zero continuous solutions of
(1.1) are {

f(x) = cχ(x),
g(x) = χ(x),

where c ∈ C\ {0}, and χ have one of the three forms in (4.1).
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