Commun. Korean Math. Soc. **38** (2023), No. 4, pp. 993–999 https://doi.org/10.4134/CKMS.c220338 pISSN: 1225-1763 / eISSN: 2234-3024

ON GRADED (m, n)-CLOSED SUBMODULES

Rezvan Varmazyar

ABSTRACT. Let A be a G-graded commutative ring with identity and M a graded A-module. Let m, n be positive integers with m > n. A proper graded submodule L of M is said to be graded (m, n)-closed if $a_g^m \cdot x_t \in L$ implies that $a_g^n \cdot x_t \in L$, where $a_g \in h(A)$ and $x_t \in h(M)$. The aim of this paper is to explore some basic properties of these class of submodules which are a generalization of graded (m, n)-closed ideals. Also, we investigate $GC_n^m - rad$ property for graded submodules.

1. Introduction

Throughout this paper G is a group, A is a G-graded commutative ring with identity and M is a graded A-module. If $a \in A$, then a can be written uniquely as $\sum_{g \in G} a_g$, where a_g is the component of a in A_g . Also, we write $h(A) = \bigcup_{g \in G} A_g$. Let I be an ideal of A. For $g \in G$, let $I_g = I \cap A_g$. Then I is a graded ideal of graded ring A if $I = \bigoplus_{g \in G} I_g$.

An A-module M is a G-graded A-module (or graded A-module) if there exists a family of subgroups $\{M_g\}_{g\in G}$ of M such that $M = \bigoplus_{g\in G} M_g$ (as abelian groups) and $A_g M_h \subseteq M_{gh}$ for all $g, h \in G$. Also, $A_g M_h$ denotes the additive subgroup of M consisting of all finite sums of elements $a_g x_h$ with $a_g \in A_g$ and $x_h \in M_h$. Also, we write $h(M) = \bigcup_{g\in G} M_g$ and the elements of h(M) are called homogeneous.

A submodule $N \subseteq M$ is called graded if N is generated by homogeneous elements. We follow [6,7] for definitions and information on graded rings and graded modules. A proper graded submodule P of a graded A-module M is called graded prime if whenever $a_g x_r \in P$, where $a_g \in h(A)$ and $x_r \in h(M)$, either $x_r \in P$ or $a_g \in (P :_A M)$. For more results of graded prime submodules one may refer to [3] and [9].

A proper graded submodule L of a graded A-module M is called graded semiprime if $a_g^m \cdot x_t \in L$ implies that $a_g \cdot x_t \in L$, where $a_g \in h(A)$ and $x_t \in h(M)$. The concept of semiprime submodules and graded semiprime submodules has been studied in many papers (see, [1], [5], [8] and [10]). It

©2023 Korean Mathematical Society

Received November 19, 2022; Revised March 14, 2023; Accepted March 30, 2023.

²⁰²⁰ Mathematics Subject Classification. 13A02, 16W50.

Key words and phrases. Graded submodule, graded (m, n)-closed, graded radical.

was shown that every graded prime submodule is graded semiprime, but the converse is not true in general (see [4]).

(m, n)-closed ideals in a commutative ring with nonzero identity have been introduced and studied in [2].

Let m, n be positive integers with m > n. A proper graded ideal I of A is called a graded (m, n)-closed if $a_g^m \cdot b_w \in L$ implies that $a_g^n \cdot b_w \in L$, where $a_g, b_w \in h(A)$. We define L to be a graded (m, n)-closed submodule of a graded A-module M if $a_g^m \cdot x_t \in L$ implies that $a_g^n \cdot x_t \in L$, where $a_g \in h(A)$ and $x_t \in h(M)$. On the other hand, L is called a graded (m, n)-closed submodule of M if $I^m K \subseteq L$ implies that $I^n K \subseteq L$, where $I \subseteq h(A)$ and $K \subseteq h(M)$. Clearly, every graded (m, 1)-closed submodule is graded semiprime.

In this paper, we characterize graded (m, n)-closed submodules, which are a generalization of graded (m, n)-closed ideals.

A graded (m, n)-closed submodule L of a graded A-module M is said to be graded minimal if whenever $K \subseteq L$ and K is a graded (m, n)-closed submodule of M, K = L.

Two graded submodules L, K of a graded A-module M are called graded coprime whenever K + L = M, see [11].

A graded A-module M is called a graded multiplication module if $L = (L :_A M)M$ for every graded submodule L of M, see [4].

2. Graded (m, n)-closed submodules

By definition, every graded semiprime submodule of a graded module is a graded (m, n)-closed submodule, but the converse is not true in general. Let n > 2 be a positive integer. Consider the set \mathbb{Z} of all integers. Take $G = (\mathbb{Z}, +)$ and $A = (\mathbb{Z}, +, \cdot)$. Define $A_g = \mathbb{Z}$, where g = 0, and $A_g = 0$ otherwise. Then each A_g is an additive subgroup of A and A is their internal direct sum. In fact, $1 \in A_0$ and $A_g A_h \subseteq A_{g+h}$. Hence A is a G-graded ring. Now, consider the graded A-module $M = \mathbb{Z}_{2^n}$. Then the graded submodule L = 0 of M is not graded semiprime, because $2^t \cdot \overline{2^{n-t}} = 0$ but $2 \cdot \overline{2^{n-t}} \neq 0$. But L is a graded (m, n)-closed submodule of M for every m > n.

Proposition 2.1. Let L be a graded (m, n)-closed submodule of a graded Amodule M. Then $(L:_A M)$ is a graded (m, n)-closed ideal of A.

Proof. Let $a_g^m \cdot b_w \in (L :_A M)$, where $a_g, b_w \in h(A)$. Therefore $a_g^m(b_w M) = (a_g^m b_w)M \subseteq L$ and L graded (m, n)-closed implies that $a_g^n(b_w M) \subseteq L$. Thus $a_g^n b_w \in (L :_A M)$, as needed.

The converse of Proposition 2.1 is not true in general. Consider the graded $(\mathbb{Z}, +, \cdot)$ -module $M = \mathbb{Z} \times \mathbb{Z}$ with $M_0 = \mathbb{Z} \times 0$ and $M_1 = 0 \times \mathbb{Z}$. Let m > 2. Then $L = (5^m \mathbb{Z}, 0)$ is not a graded (m, n)-closed submodule of M for every n < m. But $(L :_A M) = 0$ is graded prime and so a graded (m, n)-closed ideal of A.

Theorem 2.2. Let M be a graded multiplication A-module and L be a proper graded submodule of M. Then, L is a graded (m, n)-closed submodule of M if and only if $(L :_A M)$ is a graded (m, n)-closed ideal of A.

Proof. This is enough to show that if $(L:_A M)$ is a graded (m, n)-closed ideal of A, then L is a graded (m, n)-closed submodule of M. Let $I^m N \subseteq L$, where $I \subseteq h(A)$ and $N \subseteq h(M)$. Then $I^m(N:_A M) \subseteq (I^m N:_A M) \subseteq (L:_A M)$ and $(L:_A M)$ graded (m, n)-closed implies that $I^n(N:_A M) \subseteq (L:_A M)$. Hence $I^n(N:_A M)M \subseteq (L:_A M)M$, that is, $I^n N \subseteq L$.

Proposition 2.3. Let L be a proper graded submodule of a graded A-module M and m, n be positive integers with m > n. Then the following statements hold.

(i) If L is a graded (m, n)-closed submodule, then L is a graded (p, n)-closed submodule for every $p \ge m$.

(ii) If L is a graded (m, n)-closed submodule, then L is a graded (m, p)-closed submodule for every $p \ge n$.

(iii) If L is a graded (m, n)-closed submodule, then L is a graded (p, q)-closed submodule for each $p \ge m$ and $q \ge n$.

Proof. (i) Let L be a graded (m, n)-closed submodule of M and $p \ge m$. Let $a_g^p \cdot x_t \in L$, where $a_g \in h(A)$ and $x_t \in h(M)$. Hence $a_g^m(a_g^{p-m} \cdot x_t) \in L$, and L graded (m, n)-closed implies that $a_g^n(a_g^{p-m} \cdot x_t) \in L$. If $n + p - m \le m$, then $a_g^m \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n(a_g^{p-m} \cdot x_t) \in L$. If $x_t \in L$. Assume that n + p - m > m. So, $a_g^n(a_g^{p-m} \cdot x_t) = a_g^m(a_g^{p+n-2m} \cdot x_t) \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$. Assume that n + p - m > m. So, $a_g^n(a_g^{p+n-2m} \cdot x_t) \in L$. By this way we get $a_g^v \cdot x_t \in L$, where $v \le m$. Therefore $a_g^m \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_q^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ and L graded (m, n)-closed implies that $a_g^n \cdot x_t \in L$ a

(ii), (iii) The proofs are similar to the proof of (i).

By Proposition 2.3(i), it is clear that graded (m, n)-closedness is equivalent to graded (n + 1, n)-closedness.

Proposition 2.4. Let L_1, L_2, \ldots, L_t be graded (m, n)-closed submodules of a graded A-module M. Then

(i) $L_1 \cap L_2 \cap \cdots \cap L_t$ is a graded (m, n)-closed submodule of M.

(ii) If $\{L_i\}_{i \in \mathbb{Z}_t}$ is totally ordered (by inclusion) and $L_1 \cup L_2 \cup \cdots \cup L_t \neq M$, then $L_1 \cup L_2 \cup \cdots \cup L_t$ is a graded (m, n)-closed submodule of M.

Proof. (i) Let $a_g^m \cdot x_q \in L_1 \cap L_2 \cap \dots \cap L_t$, where $a_g \in h(A)$ and $x_q \in h(M)$. Then for every $i \in \mathbb{Z}_t$, $a_g^m \cdot x_q \in L_i$. Now, L_i graded (m, n)-closed implies that $a_g^n \cdot x_q \in L_i$. Therefore, $a_g^n \cdot x_q \in L_1 \cap L_2 \cap \dots \cap L_t$, as needed.

(ii) $\cup L_i \neq M$ and $\{L_i\}_{i \in \mathbb{Z}_t}$ totally ordered by inclusion implies that $\cup L_i$ is a proper graded submodule of M. Let $b_g^m \cdot u_p \in L_1 \cup L_2 \cup \cdots \cup L_t$, where $b_g \in h(A)$ and $u_p \in h(M)$. Hence $b_g^m \cdot u_p \in L_i$ for some $i \in \mathbb{Z}_t$. Thus $b_g^n \cdot u_p \in L_i$, and so $b_g^n \cdot u_p \in L_1 \cup L_2 \cup \cdots \cup L_t$, as needed.

Note that, if M is a G-graded A-module and N is a graded A-submodule of M, then M/N is a G-graded A-module by $(M/N)_g = (M_g + N)/N$ for all $g \in G$.

Lemma 2.5. Let L_1 , L_2 be graded submodules of a graded A-module M with $L_1 \subseteq L_2$. Then L_2 is a graded (m, n)-closed submodule of M if and only if L_2/L_1 is a graded (m, n)-closed submodule of M/L_1 .

Proof. Let L_2 be a graded (m, n)-closed submodule of M and $a_g^m(x_q + L_1) \in L_2/L_1$, where $a_g \in h(A)$ and $x_q \in h(M)$. Then, $a_g^m \cdot x_q \in L_2$ and L_2 graded (m, n)-closed implies that $a_g^n \cdot x_q \in L_2$. Therefore, $a_g^n(x_q + L_1) \in L_2/L_1$, as needed.

Conversely, let $a_g^m \cdot x_q \in L_2$, where $a_g \in h(A)$ and $x_q \in h(M)$. Then $a_g^m(x_q+L_2) \in L_2/L_1$ and L_2/L_1 graded (m,n)-closed implies that $a_g^n(x_q+L_1) \in L_2/L_1$. Hence $a_q^n \cdot x_q \in L_2$ as needed.

Corollary 2.6. Let L_1 , L_2 be graded submodules of a graded A-module M with $L_1 + L_2 \neq M$ and at least one of L_i is graded (m, n)-closed. Then $L_1 + L_2$ is a graded (m, n)-closed submodule of M.

Proof. Let L_2 be graded (m, n)-closed. By the second isomorphism theorem for modules $(L_1 + L_2)/L_1 \cong L_2/(L_1 \cap L_2)$. The result holds by Lemma 2.5. \Box

Proposition 2.7. Every graded (m, n)-closed submodule of a graded A-module M contains a minimal graded (m, n)-closed submodule.

Proof. Let L be a graded (m, n)-closed submodule of M and Ω be the set of all graded (m, n)-closed submodules K of M such that $K \subseteq L$. Hence $L \in \Omega$ and \subseteq is a partial order on Ω . Let ω be a non-empty subset of Ω which is totally ordered by \subseteq . Therefore by Proposition 2.4(i), $\cap_{K \in \omega} K$ is a graded (m, n)-closed submodule of M. Thus, the result holds by using the Zorn's lemma.

Note that, if M_1, M_2 are G-graded A-modules, then $M = M_1 \times M_2$ is a G-graded A-module by $M_g = (M_1)_g \times (M_2)_g$ for all $g \in G$.

Proposition 2.8. Let $A = A_1 \times A_2$ be a *G*-graded ring and $M = M_1 \times M_2$ be a graded *A*-module, where M_i is a graded A_i -module for $i \in \mathbb{Z}_2$. Let L_i be a proper graded submodule of M_i . If L_i is a graded (m, n)-closed submodule of M_i for $i \in \mathbb{Z}_2$, then $L_1 \times L_2$ is a graded (m, n)-closed submodule of M.

Proof. Let L_i 's be graded (m, n)-closed submodules of M_i and $(a_p, b_q)^m(x_v, y_u) \in L_1 \times L_2$, where $a_p \in h(A_1)$, $b_q \in h(A_2)$, $x_v \in h(M_1)$ and $y_u \in h(M_2)$. So $(a_p^m x_v, b_q^m y_u) \in L_1 \times L_2$, that is, $a_p^m x_v \in L_1$ and $b_q^m y_u \in L_2$. Thus by hypothesis, $a_p^n x_v \in L_1$ and $b_q^n y_u \in L_2$. Therefore, $(a_p, b_q)^n(x_v, y_u) = (a_p^n x_v, b_q^n y_u) \in L_1 \times L_2$, as needed.

The following result is a generalization of Proposition 2.8.

Corollary 2.9. Let $A = A_1 \times A_2 \times \cdots \times A_s$ be a G-graded ring and M = $M_1 \times M_2 \times \cdots \times M_s$ be a graded A-module, where M_i is a graded A_i -module for $i \in \mathbb{Z}_s$. Let L_i be a proper graded submodule of M_i . If L_i is a graded (m, n)-closed submodule of M_i for $i \in \mathbb{Z}_s$, then $L_1 \times L_2 \times \cdots \times L_s$ is a graded (m, n)-closed submodule of M.

3. $GC_n^m - rad$ property

Let M be a graded A-module and K be a graded submodule of M. The intersection of all graded (m, n)-closed submodules containing K is called the graded closed-radical of K and is denoted by $GC_n^m - rad_M(K)$. If there is no graded (m, n)-closed submodule containing K, then we write $GC_n^m - rad_M(K) = M$. It is clear by Proposition 2.4(i) that for every graded submodule K of M, GC_n^m – $rad_M(K)$ is graded (m, n)-closed, so that $GC_n^m - rad_M(GC_n^m - rad_M(K)) =$ $GC_n^m - rad_M(K)$; therefore

$$K \subseteq GC_n^m - rad_M(K) = GC_n^m - rad_M(GC_n^m - rad_M(K)) = \dots \subset M.$$

The class of graded (m, n)-closed submodules of a graded A-module M is denoted by $C_n^m(M)$. For a graded submodule L of M, we write:

$$GC_n^m(L)_M = \{ N \in C_n^m(M) \, | \, L \subseteq N \}.$$

Also, we put

$$G_{M_n^m}(L) = \bigcup_{a_a \in h(A)} (a_a^n M \cap (L:_M a_a^{m-n}))$$

and the graded submodule of M generated by $G_{M_n^m}(L)$ is denoted by $E_{M_n^m}(L)$ which is called graded (m, n)-envelope of L in M. Let $y_g \in E_{M_n^m}(L)$. Then $y_g = a_{g_1}^n x_{r_1} + \dots + a_{g_t}^n x_{r_t}$, where $a_{g_i} \in h(A)$, $x_{r_i} \in h(M)$ and $a_{g_i}^n x_{r_i} \in (L :_M a_{g_i}^{m-n})$ for $i \in \mathbb{Z}_t$. Let $N \in GC_n^m(L)_M$. Then, $a_{g_i}^m x_{r_i} \in L \subseteq N$ and N graded (m, n)-closed implies that $a_{g_i}^n x_{r_i} \in N$. Therefore, $y_g \in N$ and we get $E_{M_n^m}(L) \subseteq \bigcap_{N \in GC_n^m(L)_M} N = GC_n^m - rad_M(L).$

We say that M has $GC_n^m - rad$ property if for every graded submodule L of M,

$$E_{M_n^m}(L) = GC_n^m - rad_M(L).$$

Proposition 3.1. Let L_1 and L_2 be graded submodules of a graded A-module M with $L_1 \subseteq L_2$. Then

(i) $E_{(M/L_1)_n^m}(L_2/L_1) = E_{M_n^m}(L_2)/L_1.$ (ii) $GC_n^m - rad_{M/L_1}(L_2/L_1) = GC_n^m - rad_M(L_2)/L_1.$

Proof. (i) Let $a_g \in E_{(M/L_1)_n}(L_2/L_1)$. Then $a_g = \sum_{i=1}^t a_{g_i}^n(x_{q_i} + L_1)$, where $a_{g_{i}} \in h(A), \ x_{q_{i}} \in h(M), \ a_{g_{i}}^{m}(x_{q_{i}} + L_{1}) \in (L_{2}/L_{1} :_{M/L_{1}} a_{g_{i}}^{m}) \text{ for } i \in \mathbb{Z}_{t}. \text{ So } a_{g_{i}}^{m}(x_{q_{i}} + L_{1}) \in L_{2}/L_{1}, \text{ that is, } a_{g_{i}}^{m} \cdot x_{q_{i}} \in L_{2}. \text{ Thus } \Sigma_{i=1}^{t} a_{g_{i}}^{n} \cdot x_{q_{i}} \in E_{(M)_{n}^{m}}(L_{2}),$ that is, $a_g = \sum_{i=1}^t a_{g_i}^n (x_{q_i} + L_1) = \sum_{i=1}^{t} a_{g_i}^n \cdot x_{q_i} + L_1 \in E_{(M)_n^m}(L_2)/L_1$, as needed.

Now, let $b_g = \sum_{i=1}^{r} (b_{g_i}^n \cdot y_{q_i}) + L_1 \in E_{M_n^m}(L_2)/L_1$, where $b_{g_i} \in h(A), y_{q_i} \in B_{M_n^m}(L_2)/L_1$ $h(M), b_{g_i}^n \cdot y_{q_i} \in (L_2 : M_{g_i}^{m-n})$ for $i \in \mathbb{Z}_r$. Hence $b_{g_i}^m \cdot y_{q_i} \in L_2$ implies that

R. VARMAZYAR

 $b_{g_i}^m \cdot y_{q_i} + L_1 \in L_2/L_1$. So $b_g = \sum_{i=1}^r (b_{g_i}^n \cdot y_{q_i}) + L_1 = \sum_{i=1}^r b_{g_i}^n (y_{q_i} + L_1) \in L_2/L_1$. $E_{(M/L_1)_n^m}(L_2/L_1).$ (ii) It is clear by Lemma 2.5.

Proposition 3.2. Let L_1 and L_2 be graded coprime submodules of a graded A-module M. Then, $GC_n^m - rad_M(L_2) = E_{(M)_n^m}(L_2)$ if and only if $GC_n^m - c_{M,m}^m(L_2)$ $rad_{L_1}(L_1 \cap L_2) = E_{(L_1)_m}(L_1 \cap L_2).$

Proof. Since $L_1 + L_2 = M$ we have $M/L_2 \cong L_1/L_1 \cap L_2$. So, $GC_n^m - C_n^m$ $rad_M(L_2) = E_{(M)_n^m}(L_2)$ if and only if $GC_n^m - rad_M(L_2)/L_2 = E_{(M)_n^m}(L_2)/L_2$ if and only if $GC_n^m - rad_{M/L_2}(L_2/L_2) = E_{(M/L_2)_n^m}(L_2/L_2)$ if and only if $GC_n^m - rad_{M/L_2}(0) = E_{(M/L_2)_n}(0)$ if and only if $GC_n^m - rad_{L_1/L_1 \cap L_2}(0) =$ $E_{(L_1/L_1\cap L_2)_n^m}(0)$ if and only if

$$GC_n^m - rad_{L_1/L_1 \cap L_2}(L_1 \cap L_2/L_1 \cap L_2) = E_{(L_1/L_1 \cap L_2)_n^m}(L_1 \cap L_2/L_1 \cap L_2)$$

if and only if $GC_n^m - rad_{L_1}(L_1 \cap L_2)/L_1 \cap L_2 = E_{(L_1)_n^m}(L_1 \cap L_2)/L_1 \cap L_2$ if
and only if $GC_n^m - rad_{L_1}(L_1 \cap L_2) = E_{(L_1)_n^m}(L_1 \cap L_2).$

- **T**)

The following result holds by the proof of Proposition 3.2.

- - / -

Corollary 3.3. Let L_1 and L_2 be graded coprime submodules of a graded Amodule M. Then, $GC_n^m - rad_M(L_1) = E_{(M)_n^m}(L_1)$ if and only if $GC_n^m - rad_M(L_1)$ $rad_{L_2}(L_1 \cap L_2) = E_{(L_2)_n}(L_1 \cap L_2).$

Proposition 3.4. Let M be a graded A-module. If every graded submodule of the graded factor A-module $M/E_{(M)_n}(0)$ is graded (m,n)-closed, then M has GC_n^m – rad property.

Proof. Let L be a proper graded submodule of M. Since $E_{(M)_n^m}(0) \subseteq E_{(M)_n^m}(L)$, we get $E_{(M)_n^m}(L)/E_{(M)_n^m}(0)$ is a graded submodule of $M/E_{(M)_n^m}(0)$. So $E_{(M)_n^m}(L)/E_{(M)_n^m}(0)$ is graded (m, n)-closed. Thus

$$\begin{split} E_{(M)_n^m}(L)/E_{(M)_n^m}(0) &= GC_n^m - rad_{M/E_{(M)_n^m}(0)}(E_{(M)_n^m}(L)/E_{(M)_n^m}(0)) \\ &= GC_n^m - rad_M(E_{(M)_n^m}(L))/E_{(M)_n^m}(0). \end{split}$$

Therefore $E_{(M)_n^m}(L) = GC_n^m - rad_M(E_{(M)_n^m}(L))$. Also, $L \subseteq E_{(M)_n^m}(L)$ implies that $GC_n^m - rad_M(L) \subseteq GC_n^m - rad_M(E_{(M)_n^m}(L))$, that is, $GC_n^m - rad_M(L) \subseteq GC_n^m - rad_M(E_{(M)_n^m}(L))$. $rad_M(L) \subseteq E_{M_n^m}(L)$. Now by the statement just prior to Proposition 3.1, we have $E_{M_n^m}(L) \subseteq GC_n^m - rad_M(L)$. Therefore, $E_{M_n^m}(L) = GC_n^m - rad_M(L)$. \square

Proposition 3.5. Let M be a graded A-module. If M has GC_n^m -rad property, then $E_{(M)_m}(E_{(M)_m}(L)) = E_{(M)_m}(L)$ for every graded submodule L of M.

Proof. Let L be a graded submodule of M. Hence $E_{M_n^m}(L) = GC_n^m - rad_M(L)$. Also, $E_{M_n^m}(E_{M_n^m}(L)) = GC_n^m - rad_M(E_{M_n^m}(L))$ for graded submodule $E_{M_n^m}(L)$ of M. Therefore

$$E_{M_n^m}(E_{M_n^m}(L)) = GC_n^m - rad_M(E_{M_n^m}(L))$$

$$= GC_n^m - rad_M(GC_n^m - rad_M(L))$$

= $GC_n^m - rad_M(L) = E_{M_n^m}(L).$

Acknowledgements. The author would like to thank the referee for valuable suggestions and comments which improved the present article.

References

- K. Al-Zoubi, R. Abu-Dawwas, and I. Al-Ayyoub, Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ric. Mat. 66 (2017), no. 2, 449–455. https://doi.org/10.1007/s11587-016-0312-x
- [2] D. F. Anderson and A. R. Badawi, On (m,n)-closed ideals of commutative rings, J. Algebra Appl. 16 (2017), no. 1, 1750013, 21 pp. https://doi.org/10.1142/ S021949881750013X
- [3] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), no. 1, 3-7.
- S. C. Lee and R. Varmazyar, Semiprime submodules of graded multiplication modules, J. Korean Math. Soc. 49 (2012), no. 2, 435-447. https://doi.org/10.4134/JKMS.2012. 49.2.435
- S. C. Lee and R. Varmazyar, Semiprime submodules of a module and related concepts, J. Algebra Appl. 18 (2019), no. 8, 1950147, 11 pp. https://doi.org/10.1142/ S0219498819501470
- [6] C. Năstăsescu and F. M. J. Van Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics, 758, Springer, Berlin, 1979.
- [7] C. Năstăsescu and F. M. J. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland, Amsterdam, 1982.
- [8] A. Pekin, S. Koç, and E. A. Uğurlu, On (m, n)-semiprime submodules, Proc. Est. Acad. Sci. 70 (2021), no. 3, 260–267. https://doi.org/10.3176/proc.2021.3.05
- [9] H. Saber, T. A. Alraqad, and R. Abu-Dawwas, On graded s-prime submodules, AIMS Math. 6 (2021), no. 3, 2510–2524. https://doi.org/10.3934/math.2021152
- [10] B. Saraç, On semiprime submodules, Comm. Algebra 37 (2009), no. 7, 2485–2495. https://doi.org/10.1080/00927870802101994
- [11] R. Varmazyar, Graded coprime submodules, Math. Sci. (Springer) 6 (2012), Art. 70, 4 pp.

REZVAN VARMAZYAR DEPARTMENT OF MATHEMATICS KHOY BRANCH, ISLAMIC AZAD UNIVERSITY KHOY 58168-44799, IRAN Email address: rezvan.varmazyar@iau.ac.ir