Acknowledgement
This work was supported by the National Research Foundation of Korea NRF) grant funded by the Korea government MSIT) No. RS-2023-00209722)
References
- Stewart WF, Wood C, Reed ML, Roy J, Lipton RB. Cumulative lifetime migraine incidence in women and men. Cephalalgia 2008;28:1170-1178. https://doi.org/10.1111/j.1468-2982.2008.01666.x
- Leone M, D'Amico D, Frediani F, Torri W, Sjaastad O, Bussone G. Clinical considerations on side-locked unilaterality in long-lasting primary headaches. Headache 1993;33:381-384. https://doi.org/10.1111/j.1526-4610.1993.hed3307381.x
- Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol 2017;264:2031-2039. https://doi.org/10.1007/s00415-017-8434-y
- Schwedt TJ, Chiang CC, Chong CD, Dodick DW. Functional MRI of migraine. Lancet Neurol 2015;14:81-91. https://doi.org/10.1016/S1474-4422(14)70193-0
- Liu J, Zhao L, Li G, Xiong S, Nan J, Li J, et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS One 2012;7:e51250.
- de Tommaso M, Trotta G, Vecchio E, Ricci K, Siugzdaite R, Stramaglia S. Brain networking analysis in migraine with and without aura. J Headache Pain 2017;18:98.
- Ren J, Xiang J, Chen Y, Li F, Wu T, Shi J. Abnormal functional connectivity under somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study. J Headache Pain 2019;20:3.
- Jia Z, Yu S. Grey matter alterations in migraine: a systematic review and meta-analysis. Neuroimage Clin 2017;14:130-140. https://doi.org/10.1016/j.nicl.2017.01.019
- Chong CD, Aguilar M, Schwedt TJ. Altered hypothalamic region covariance in migraine and cluster headache: a structural MRI study. Headache 2020;60:553-563. https://doi.org/10.1111/head.13742
- Chen JJ, Jann K, Wang DJ. Characterizing resting-state brain function using arterial spin labeling. Brain Connect 2015;5:527-542. https://doi.org/10.1089/brain.2015.0344
- Detre JA, Rao H, Wang DJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012;35:1026-1037. https://doi.org/10.1002/jmri.23581
- Pollock JM, Deibler AR, Burdette JH, Kraft RA, Tan H, Evans AB, et al. Migraine associated cerebral hyperperfusion with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol 2008;29:1494-1497. https://doi.org/10.3174/ajnr.A1115
- Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.
- Dai W, Varma G, Scheidegger R, Alsop DC. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI. J Cereb Blood Flow Metab 2016;36:463-473. https://doi.org/10.1177/0271678X15615339
- Lee DA, Lee HJ, Kim HC, Park KM. Network differences based on arterial spin labeling related to anti-seizure medication response in focal epilepsy. Neuroradiology 2022;64:313-321. https://doi.org/10.1007/s00234-021-02741-8
- Boscolo Galazzo I, Storti SF, Barnes A, De Blasi B, De Vita E, Koepp M, et al. Arterial spin labeling reveals disrupted brain networks and functional connectivity in drug-resistant temporal epilepsy. Front Neuroinform 2019;12:101.
- Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition. Cephalalgia 2018;38:1-211. https://doi.org/10.1177/0333102417738202
- Wang Z, Aguirre GK, Rao H, Wang J, Fernandez-Seara MA, Childress AR, et al. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 2008;26:261-269. https://doi.org/10.1016/j.mri.2007.07.003
- Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015;122:1-5. https://doi.org/10.1016/j.neuroimage.2015.07.075
- Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G. BRAPH: a graph theory software for the analysis of brain connectivity. PLoS One 2017;12:e0178798.
- Farahani FV, Karwowski W, Lighthall NR. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 2019;13:585.
- May A. Morphing voxels: the hype around structural imaging of headache patients. Brain 2009;132:1419-1425. https://doi.org/10.1093/brain/awp116
- Kivimaki I, Lebichot B, Saramaki J, Saerens M. Two betweenness centrality measures based on randomized shortest paths. Sci Rep 2016;6:19668.
- Younis S, Hougaard A, Noseda R, Ashina M. Current understanding of thalamic structure and function in migraine. Cephalalgia 2019;39:1675-1682. https://doi.org/10.1177/0333102418791595
- Tu Y, Fu Z, Zeng F, Maleki N, Lan L, Li Z, et al. Abnormal thalamocortical network dynamics in migraine. Neurology 2019;92:e2706-e2716.
- Coppola G, Di Renzo A, Tinelli E, Lepre C, Di Lorenzo C, Di Lorenzo G, et al. Thalamo-cortical network activity between migraine attacks: insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain 2016;17:100.
- Shin KJ, Lee HJ, Park KM. Alterations of individual thalamic nuclei volumes in patients with migraine. J Headache Pain 2019;20:112.
- Russo A, Tessitore A, Esposito F, Marcuccio L, Giordano A, Conforti R, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol 2012;259:1903-1912. https://doi.org/10.1007/s00415-012-6438-1
- Schwedt TJ, Chong CD, Chiang CC, Baxter L, Schlaggar BL, Dodick DW. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia 2014;34:947-958. https://doi.org/10.1177/0333102414526069
- Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1-38. https://doi.org/10.1196/annals.1440.011
- Tessitore A, Russo A, Giordano A, Conte F, Corbo D, De Stefano M, et al. Disrupted default mode network connectivity in migraine without aura. J Headache Pain 2013;14:89.
- Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 2008;28:1398-1403. https://doi.org/10.1523/JNEUROSCI.4123-07.2008
- Xue T, Yuan K, Cheng P, Zhao L, Zhao L, Yu D, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed 2013;26:1051-1058. https://doi.org/10.1002/nbm.2917
- Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004;24:10410-10415. https://doi.org/10.1523/JNEUROSCI.2541-04.2004
- Szabo E, Galambos A, Kocsel N, Edes AE, Pap D, Zsombok T, et al. Association between migraine frequency and neural response to emotional faces: an fMRI study. Neuroimage Clin 2019;22:101790.
- Varol U, Ubeda-D'Ocasar E, Cigaran-Mendez M, Arias-Buria JL, Fernandez-de-Las-Penas C, Gallego-Sendarrubias GM, et al. Understanding the psychophysiological and sensitization mechanisms behind fibromyalgia syndrome: a network analysis approach. Pain Med 2023;24:275-284. https://doi.org/10.1093/pm/pnac121
- Zhang YP, Hong GH, Zhang CY. Brain network changes in lumbar disc herniation induced chronic nerve roots compression syndromes. Neural Plast 2022;2022:7912410.
- Zhang JP, Shen J, Xiang YT, Xing XX, Kang BX, Zhao C, et al. Modulation of brain network topological properties in knee osteoarthritis by electroacupuncture in rats. J Pain Res 2023;16:1595-1605.
- Fernandez-de-Las-Penas C, Herrero-Montes M, Cancela-Cilleruelo I, Rodriguez-Jimenez J, Paras-Bravo P, Varol U, et al. Understanding sensitization, cognitive and neuropathic associated mechanisms behind post-COVID pain: a network analysis. Diagnostics (Basel) 2022;12:1538.
- Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. Neuroimage 2014;102 Pt 1:11-23. https://doi.org/10.1016/j.neuroimage.2013.09.044