
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

147

Manuscript received October 5, 2023
Manuscript revised October 20, 2023

https://doi.org/10.22937/IJCSNS.2023.23.10.18

Configurable Smart Contracts Automation for EVM based
Blockchains

ZAIN UL ABEDIN Muhammad Shujat Ali Ashraf Ali Sana Ejaz
Technical Team Lead IT Manager Assistant Prof & In-Charge Mphil (CS) M.Phil CS
Nugenesis Pty, Ltd Australia Orange Networks The Institute of Management Sciences FAST National University of

 Computer and Emerging Sciences,
zainmustafaaa@hotmail.com Shujat@organnetworks.com ashraf@pakaims.edu.pk sani.ejaz.a@gmail.com

Summary
Electronic voting machines (EVMs) are replacing research
ballots due to the errors involved in the manual counting
process and the lengthy time required to count the votes. Even
though these digital recording electronic systems are
advancements, they are vulnerable to tampering and electoral
fraud. The suspected vulnerabilities in EVMs are the possibility
of tampering with the EVM's memory chip or replacing it with
a fake one, their simplicity, which allows them to be tampered
with without requiring much skill, and the possibility of double
voting. The vote data is shared among all network devices, and
peer-to-peer verification is performed to ensure the vote data's
authenticity. To successfully tamper with the system, all of the
data stored in the nodes must be changed. This improves the
proposed system's efficiency and dependability. Elections and
voting are fundamental components of a democratic system.
Various attempts have been made to make modern elections
more flexible by utilizing digital technologies. The fundamental
characteristics of free and fair elections are intractability,
immutability, transparency, and the privacy of the actors
involved. This corresponds to a few of the many characteristics
of blockchain-like decentralized ownership, such as chain
immutability, anonymity, and distributed ledger. This working
research attempts to conduct a comparative analysis of various
blockchain technologies in development and propose a
'Blockchain-based Electronic Voting System' solution by
weighing these technologies based on the need for the proposed
solution. The primary goal of this research is to present a robust
blockchain-based election mechanism that is not only reliable
but also adaptable to current needs.
Keywords: Smart Contracts, Automation, EVM, Blockchains,
Solidity, Ethereum, Hyperledger, JSON

1. Introduction
At this point, the use of technology in meeting

human needs has become commonplace. As most people
today do not trust their governments, the increasing use
of technology has created new challenges in the
democratic process, making elections critical in a
modern democracy. Elections have enormous power in
determining the fate of a country or organization.

Blockchain technology is one solution that can be used to
reduce voting problems. The blockchain is a distributed,
immutable, and transparent ledger that cannot be altered.

1.1 Benefits of Blockchain

A. Greater Trust
As a member of a people who are part network, you

can belief that you will receive relevant and reliable
information after blockchain, and that only network
participants that you also expressly granted access will
have direct exposure to your sensitive blockchain records.

B. Greater Security
Data accuracy must be agreed upon by all

participants in the network, and all confirmed
transactions are irreversible as they are completely
recorded. Nobody, an action no one, not even the system
administrator, can delete it.

C. More Efficiency
Time consuming record reconciliations are

eliminated with a distributed network shared by network
users. A smart contract is a set of rules that can be
located on the blockchain and executed automatically
speed up transaction.

1.2 Blockchain Network Types

There are numerous ways to build a blockchain
network. They may be created individually, collectively,
publicly, or privately.

1.2.1 Blockchain Networks Open to the Public

A public blockchain, like the one used by Bitcoin, is
open to everyone. It requires a lot
of computing power, offers little to no privacy during
transactions, and has poor Security. These are important
factors for the blockchain use cases in the sector.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

148

1.2.2 Private Blockchain Networks

A commercial blockchain network is a
decentralized P-to-P network, just like a public
blockchain network. On the other hand, the network is
run by a single organization that controls who can
participate, implements a consensus process, and
manages the shared ledger. Depending on the use case,
this can significantly raise participant trustworthiness. A
private blockchain can be used and even organized on-
site within a company's firewall.

1.2.3 Permissioned Blockchain Networks

A permissioned blockchain network is typically set
up by businesses that build private blockchains. It’s
crucial to keep in mind that public blockchain networks
can have permissions as well. This restricts who is
allowed to use the network and what transactions they
can conduct. Respondents must first receive an invitation
or authorization to participate.

1.2.4 Consortium Blockchains

The maintenance of a blockchain could be shared
among several businesses. That pre-selected entities
decide who can yield to transactions or admittance data.
When everyone needs to have approval and share
ownership of the blockchain, a consortium blockchain is
the best option.

1.2.5 Blockchain Security
Risk management methods are available for

blockchain networks. After creating a business
blockchain app, it's critical to have a well-thought-out
security plan that incorporates cyber security frameworks,
declaration services, and finest practices to decrease the
risk of spells and fraud.

Figure 1: Working of Blockchain

1.3 Smart Contracts

Contracts are object-oriented languages
equivalents of classes, and they can store captured formal
variables. Away from each other from the general-
purpose types used in traditional programming languages,
such as text, integers, static or dynamic arrays, a crucial
type in Solidity is the address, which identifies users
(EOAs) and extra contracts' locations. Contracts can also
have functions that are called from outside the contract.
Function convertors can also be applied to many
functions to conduct declarative preparatory checks (for
example, data validation), mirroring aspects of aspect-
oriented programming [5].

Figure 2: A Simple Voting System is represented by a
contract extract

Smart contracts may be specified and encoded very

easily thanks to the usage of high-level languages. It's
worth noting, though, that smart contracts' potential they
are essential infrastructure because they are used as
mediators in open systems.
The following table shows how Ethereum and
Hyperledger Composer differ in their smart contract
syntax:

Table 1: Difference in the Syntax of Smart Contracts

between Hyperledger Composer and Ethereum

Parameters Hyper ledger Composer Ethereum

Determine the
patient
information
field's contract
state.

Asset Medical Record
recognised by recordId ->
Patient holder o String
recordId -> asset

Defined as a State
Variable:

bytes32 recordId;

Patient private
owner;

Define a
patient as a
contractual
party

Participant is defined as:
participant Patient
recognized by patientId,
which is made up of the
following elements: string

Defined as State
variable or struct:

struct Patient{

bytes32 name;

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

149

patientId, string name,
integer age, and string
gender.

uint age;

Gender gender;}

The method
that can be
used to execute
the contract
functionality

Defined as Transaction:

transaction
setPatientName{

o String name

}

Defined as Function:

function
setPatientName(byte
s32 name)

public{

patient.

A condition
that specifies
who can access
the contract
method

Defined as rule in access
policy file :

Rule
PatientSeeUpdateOwnMed
icalRecord {

description: "Patient can
read and update their own
record only"

participant(t):
"org.medical.Patient"

operation: ALL

resource(v):
"org.medical.record"

condition:(v.owner.getIden
tifier() ==

t.getIdentifier())

action: ALLOW }

Defined as a
Modifier:

address public
recordOwner;

modifier
onlyOwner() {

require(msg.sender
== recordOwner);

_;

}

Automated Analysis of Smart Contracts

Methodologies for analyzing code on some input
data, dynamic code analysis [LSCL12] executes the
program but only analyses a subset of all potential
execution paths. Static code analysis can offer
comprehensive coverage without executing the program
and can be performed fast on tiny code segments. A static
analysis usually consists of three steps:

(1) creating an integral image (IR) for a more in-depth
analysis than text analysis, using algorithms like control-
and data access assessment (synonym, constant, and type
propagation [ASU07]), taint analysis [TPF+09], symbolic
execution, and abstract interpretation;

(2) Enriching the IR with additional information [Wög05];

(3) Vulnerability identification based on a database of
patterns, which define as formal specifications of the
contract's intended functionality are seldom accessible,
we do not discuss formal verification techniques in this
section.

Table 2: Smart Check Parameters

Name Description

Balance equality Contract logic can be manipulated by
an opponent by sending ether against
their will. Utilize balances with non-

strict inequality

Unchecked
external call

There is no verification on the return
value. Check method return values at

all times.

DoS by external
contract

Expect other calls to be intentionally
ignored.

send instead of
transfer

It is important to verify send's return
value. Use transfer, which is akin to

throwing if (!send());

Reentrancy After all local state modifications,
outside contracts should be contacted.

Malicious libraries Using outside libraries might be
risky. Avoid external code

dependencies, and check every
project-related code.

Using tx.origin A malevolent contract may take
action on behalf of a user. For

authentication, use msg.sender.

Transfer forwards
all gas

All gas is sent by a.call.value ()(),
enabling the callee to call back. Use
a.transfer(); it only delivers 2300 gas

to the callee (insufficient for a
callback)

Integer division Rounding down reduces the quotient.
Keep track of it, particularly the ether

and token balances.

Locked money Ether is delivered to the contract, but
it cannot be withdrawn. Add a
withdrawal feature or refuse

payments

Unchecked math Integer overflow and underflow are
conceivable without further checks.

Utilize SafeMath

Timestamp
dependence

Timestamps can be changed by
miners. Make environment-

independent vital code.

Unsafe type
inference

The lowest integer type is selected
through type inference.

Explicitly specify types

Byte array byte[] requires more than bytes

Costly loop The block gas limit may be exceeded
by expensive calculation within

loops. Avoid loops with numerous or
arbitrary stages.

Token API
violation

Where the ERC20 standard
anticipates a bool, the contract

throws. Rather, return false.

Compiler version
not fixed

Future compiler versions can build
contracts. Give the precise compiler

version.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

150

private modifier The private modifier simply prevents
remote programmes from altering the

variable, not to conceal its value.

Redundant fallback
function

Fallback for payment rejection is
unnecessary. To conserve space,

disable the feature that causes
payments to be automatically denied.

Style guide
violation

Confusion results from inconsistent
capitalization. Start event names with
uppercase and function names with

lowercase.

Implicit visibility
level

By default, functions are made
public. Keep things clear: Declare

visibility level explicitly

Conoscenti et al. (2016) published an SLR at the

end of 2016 on the use and flexibility of blockchain with
regard to the Internet of Things and other peer-to-peer
technologies. Additionally, they claimed that data theft
might be detected using the blockchain without the
requirement for a centralized reporting mechanism. An
SLR outlining the rising impact of blockchain on service
schemes was published in 2017 by Seebacher and
Schüritz. According to the results of their SLR,
blockchain is essential to the functioning of a core service.
Most recently in 2018, Reyna et al. (2018) compiled a list
of appropriate works in order to identify existing issues
and areas for development in the combination of
blockchain and IoT sectors. They discovered that the
current state of the two technologies together confronts
six difficulties: scalability, security, privacy, smart
contracts, legal issues, and agreement. They also provided
a study to highlight the benefits of integrating blockchains
with IoT devices.

2. Methodology

The underlying difficulty that many blockchain-
based systems face is scalability [69]. As the chain
increases in size, the blockchain validation technique gets
more sophisticated and time-consuming. To overcome
this issue, we decided to split the blockchain into two
parts: smart contracts and transactions. One is for storing
and executing smart contracts, while the other is for
keeping track of transactions. Parties must first agree on
business terms, which are then converted into smart
contracts, or contracts that may be executed automatically.

Figure 3: Blockchain-based Smart Contract Management
Systems.

Solidity is a high-level object-oriented programming
language that may be used to create smart contracts.
Account operations in the Ethereum state are governed by
smart contracts, which are computer programs. Solidity, a
programming language using curly brackets, was created
for the Ethereum Virtual Machine (EVM). It is influenced
by C++, Python, and JavaScript. Additional details on the
languages that have influenced Solidity can be found in
the portion on linguistic impacts. Solidity's statically
typed nature it supports sophisticated user-defined types,
libraries, and inheritance, among other things. You can
design contracts using Solidity for things like voting,
crowdsourcing, blind bidding, and multi-signature wallets.
Use the most recent Solidity version when deploying
contracts. Only the most recent version receives security
updates, unless there are exceptional circumstances.
Furthermore, new features and breaking modifications are
added on a regular basis.an algorithm capable of reading
the Solidity Smart Contract and then converting it to a
JSON file Implemented Solidity version 1.1, which is
stored in the JSON file as Solidity version 1.1, as well as
any functions it may have, such as a main function with a
body of its own, which is also known to that JSON file.
Then there will be a second algorithm that will read the
JSON file that the first algorithm has created. After that,
the second algorithm will parse the JSON file and convert
it to a Solidity Smart Contract. In simple words there will
be a two-way conversion Smart contract to JSON and
from JSON to Smart contract providing the end user with
no need of writing any line of code. The JSON object will
be able to be updated from any platform or web
application so that the user will be able to add features to
it that they like and make other changes as required

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

151

through the automation process that I am trying to build.

The algorithms I am going to write for this project
will not be based on any defined standards that already
exist. The reason for this is there has not been much work
done in creating automated smart contracts like this so my
algorithms will be totally custom made for this purpose.
Once the algorithms are somewhat successfully made and
the dependency of a third party developer is removed
there will be no more accidental errors or anything of that
sort. In short there will be no human error and we will
have a much more cost efficient method of creating
contracts in the open source community. This is what I
want to achieve and therefore I will research and describe
a standard for input variables and function parameters in a
JSON structure with the smart contract and make that
bundle name i.e. template. Furthermore this system will
consider the whole platform where for the end-user, user-
interface also included. So that the platform for
automation will understand the requirements for that
particular template and will provide a nice user interface
to the end user which will be based on the input
requirement i.e. for boolean it will show the checkboxes
etc. So the user will only need to enter the required
configurable information for the template and platform
transform the smart contract with user provided
configurations. End user can also deploy that smart
contract onto the ethereum blockchain by providing the
account.

2.1 A JSON Parser for Solidity

With the introduction of frameworks such as
Truffle and services such as oraclize.it, developing smart
contracts in Ethereum has become easier. Using oracles to
access information outside of the blockchain, in particular,
has become simple enough for contract development.
However, the majority of the data that is fed into the
blockchain via Oracle transactions is in JSON format. To
process the data supplied by an oracle, a smart contract
must parse a JSON object. String processing is especially
costly on the Ethereum blockchain. As a result, the JSON
parser should be "lightweight," requiring little
computation to parse and process a JSON string. Because
there was no JSON parser for Solidity that I was aware of,
I decided to write my own. As a starting point, I ported
the code from jsmn to Solidity. Jsmn's main design
consideration is to parse a JSON string in a single pass

while avoiding copying substrings along the way. As a
result, the parser only generates meta data on the provided
string, which can later be used to locate and access
objects.

2.2 No copying, single pass, fixed memory

The parser operates by parsing the supplied string
once, character by character. Along the way, it generates
tokens that each identify an object in the string and
indicate where it begins and ends. A token has the
following structure:
struct Token {
 JsmnType jsmnType;
 uint start;
 bool startSet;
 uint end;
 bool endSet;
 uint8 size;
}
The JsmnType encodes the type of the token. Valid
values are:
enum JsmnType { UNDEFINED, OBJECT, ARRAY,
STRING, PRIMITIVE}

It is worth noting that number, boolean, and null
are all treated as JsmnType. PRIMITIVE. They can be
distinguished by evaluating the token's first character. The
next two values are start and end. They encode the
beginning and end positions of the substring that
identifies the object. The size of an object indicates how
many sub-objects it has (that is the number of children in
the JSON hierarchy). For technical reasons, there are two
more variables (start Set and endSet) that are false on
initialization but become true once the parse has set the
values for start or end. They are required because Solidity
has a habit of setting all variables to their default values.

2.3 Solidity to JSON Converter

The version of this Solidity programming
language will be first to convert into JSON file which is
of high significance as both the algorithms will be
working on converting files from one form to the other.
Rest of the code may differ but version is the single
parameter which needs to remain constant as the compiler
of Solidity should be the same.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

152

2.4 Solidity to JSON Converter Data Flow

First, open the Read source code file. Sol files are
translated by Solidity version 1.1, and the translator
validates the syntax. If the source code is valid, the
translator will map to the JSON file and write the JSON
file according to the object formatter.

Figure 4: Solidity to JSON Converter Data Flow

2.5 Working Procedure of Solidity to JSON
Converter

const fs = require('fs-extra');
const path = require('path');
const strip = require('strip-comments');
const parent = [];
const jsonObject = {};
let source = fs.readFileSync(path.resolve(process.cwd(), 'source', 'Ballot.sol'));
source = strip(source.toString());
source = source.split('\n').filter(_ => _ !== '').map(_ => _.trim()).filter(_ => _ !== '');
for(let i=0; i<source.length; i++) {
 const statement = source[i].split(' ').filter(_ => (_ !== '{' || _ !== '}'));
 parseToJson(statement)
}
function parseToJson(statement) {
 switch(statement[0]) {
 case 'pragma': {
 jsonObject['version'] = statement.join(' ');
 break;
 }
 case 'contract': {
 jsonObject[statement[0]] = { name: statement[1], type: statement[0] };
 break;
 }
 case 'function': {
 if(jsonObject.functions) {
 jsonObject.functions.push(statement[1].split('(')[0]);
 jsonObject.method[statement[1].split('(')[0]] = {
 type: 'function',
 header: statement.join(' ').split('{')[0].trim(),
 statements: [],
 }
 } else {
 jsonObject.functions = [statement[1].split('(')[0]];
 jsonObject.method = {};
 jsonObject.method[statement[1].split('(')[0]] = {
 type: 'function',
 header: statement.join(' ').split('{')[0].trim(),
 statements: [],
 }

 }
 break;
 }
 case 'struct': {
 jsonObject[statement[1]] = { type: statement[0], statements: [] }
 break;
 }
 }
 if(parent.length > 1) {
 if(jsonObject[parent[parent.length - 1]]) {
 jsonObject[parent[parent.length - 1]].statements.push(statement.join(' '));
 }

 if(jsonObject.method && jsonObject.method[parent[parent.length - 1]]) {
 jsonObject.method[parent[parent.length -
1]].statements.push(statement.join(' '));
 }
 }
 if(parent.length === 1) {
 if(statement[statement.length - 1].split(';').length === 2)
 if(!jsonObject.globalDeclarations) jsonObject.globalDeclarations =
[statement.join(' ')];
 else jsonObject.globalDeclarations.push(statement.join(' '));
 }
 for(let _ of statement) {
 if(_ === '{') parent.push(statement[1]?.split('(')[0]);
 if(_ === '}') parent.pop();
 }
}
console.log (jsonObject.method);

A contract is a grouping of Solidity code (the

contract's functions) and data (the contract's state)
recorded at a single Ethereum blockchain location. The
statement unit stored Data; declares an unit state variable
named stored Data (unsigned integer of 256 bits). You
may think of it as a single database slot that you can
query and modify with database management code
operations. The functions set and get, which can be used
to alter or retrieve the value of the variable, are defined by
the contract in this situation. This is seldom used to
retrieve a current contract member (such as a status
variable). You may go to Prefix just by typing its name.
In contrast to other languages, removing it is not just a
question of style; it results in an entirely different means
of accessing the member, but more on that later.

2.6 JSON to Solidity Converter
In this step the JSON file will be converted into

the solidity. jsmnSol is a port of the jsmn JSON parser to
Solidity, originally written in C. Its main purpose is to
parse small JSON data on chain. Because string handling
is complicated in Solidity and particularly expensive the
usage should be restricted to small JSON data. However,
it can help to reduce calls to oracles and deal with the
responses on chain.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

153

2.7 JSON to Solidity Converter Data Flow
First, open the Read source code file. JSON files

are retranslated by Solidity version 1.1, and the translator
validates the syntax. If the source code is valid, the
translator will map to the JSON file and write the Solidity
file according to the object formatter.

Figure 5: JSON to Solidity Converter Data Flow

2.8 Working Procedure of Solidity to JSON
Converter

const fs = require('fs-extra');
const path = require('path');
const strip = require('strip-comments');
const parent = [];
const jsonObject = {};
let source = fs.readFileSync(path.resolve(process.cwd(), 'source', 'Ballot.sol'));
source = strip(source.toString());
source = source.split('\n').filter(_ => _ !== '').map(_ => _.trim()).filter(_ => _ !== '');
for(let i=0; i<source.length; i++) {
 const statement = source[i].split(' ').filter(_ => (_ !== '{' || _ !== '}'));
 parseToJson(statement)
}
function parseToJson(statement) {
 switch(statement[0]) {
 case 'pragma': {
 jsonObject['version'] = statement.join(' ');
 break;
 }
 case 'contract': {
 jsonObject[statement[0]] = { name: statement[1], type: statement[0] };
 break;
 }
 case 'function': {
 if(jsonObject.functions) {
 jsonObject.functions.push(statement[1].split('(')[0]);
 jsonObject.method[statement[1].split('(')[0]] = {
 type: 'function',
 header: statement.join(' ').split('{')[0].trim(),
 statements: [],
 }
 } else {
 jsonObject.functions = [statement[1].split('(')[0]];
 jsonObject.method = {};
 jsonObject.method[statement[1].split('(')[0]] = {
 type: 'function',
 header: statement.join(' ').split('{')[0].trim(),
 statements: [],

 }
 }
 break;
 }
 case 'struct': {
 jsonObject[statement[1]] = { type: statement[0], statements: [] }
 break;
 }
 }
 if(parent.length > 1) {
 if(jsonObject[parent[parent.length - 1]]) {
 jsonObject[parent[parent.length - 1]].statements.push(statement.join(' '));
 }

 if(jsonObject.method && jsonObject.method[parent[parent.length - 1]]) {
 jsonObject.method[parent[parent.length -
1]].statements.push(statement.join(' '));
 }
 }
 if(parent.length === 1) {
 if(statement[statement.length - 1].split(';').length === 2)
 if(!jsonObject.globalDeclarations) jsonObject.globalDeclarations =
[statement.join(' ')];
 else jsonObject.globalDeclarations.push(statement.join(' '));
 }
 for(let _ of statement) {
 if(_ === '{') parent.push(statement[1]?.split('(')[0]);
 if(_ === '}') parent.pop();}}
console.log (jsonObject.method);

3. Results and Discussion

Investigating the algorithm behavior on the Ballot
smart contract, in which users have written to vote for a
specific purpose. We have a solidity voter structure
where the weight corresponds to some delegation voted
status in bool and the voter address as delegate in the

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

154

end structure is maintaining the voter index with
variable vote.

3.1 JSON Implementation of the Structure
On the right side, we can see the JSON implementation of
the structure, where the Voter type is struct and some
voter struct statements are written in an array with the
statements key.

 Figure 6: JSON Implementation of the Structure

3.2 Ballot Smart Contract
Ballot smart contract have some global declarations
including chairperson as address with having some lead
privileges also a mapping with voter structure
maintaining with unique key (address). Algorithm
analysis the smart contract and make the global
declarations separated in the. JSON implementation with
key global Declarations having set of arrays as
declarations.

Figure 7: Ballot Smart Contract

 3.3 Smart Contract Multiple Functions
Also, in the smart contract we have multiple functions
one of the major function names as give Right to Vote so
we have to pass an address as a parameter and that user
can be able to vote in a system. In a JSON

implementation of function, we have some properties like
key as function give Right to Vote type as function,
header with function public access and parameter details
and statements as array of function instructions.

Figure 8: Smart Contract Multiple Functions

3.4 The Smart Contract Named as Delegate

Another main function of Balloting in the smart contract
named as delegate so we have to pass an address as a
parameter and that user can be voted in a system. In a
JSON implementation of function we have some
properties like key as function delegate type as function,
header with function public access and parameter details
and statements as array of function instructions.

Figure 9: The Smart Contract Named As Delegate

3.5 The Smart Contract Named as Vote
Maintaining The Index of Voting
Another main function of Balloting in the smart contract
named as vote Maintaining the index of voting. In a
JSON implementation of function, we have some
properties like key as function vote type as function,
header with function public access and parameter details
and statements as array of function instructions.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

155

Figure 10: The Smart Contract Named as Vote
Maintaining The Index of Voting

 3.6 Winning Proposal Type Function

Winning Proposal calculating the highest voted
structure and returning the value as a result. In a JSON
implementation of function, we have some properties like
key as function winning Proposal type as function, header
with function public access and parameter details and
statements as array of function instructions. WinnerName
is a getter function which returns the winner name as in
result so anyone can call this function without spending
the gas fee to see the winner name. In a JSON
implementation of function, we have some properties
like key as function winnerName type as function,
header with function public access and parameter details
and statements as array of function instructions.

Figure 11: function winning Proposal type as function

4. Conclusion
The emerging smart contracts have become a hot

research topic in both academia and industry due to the
rapid development of blockchain technologies. Smart
contracts' immutability and irreversibility can help people
exchange money, shares, intellectual property, and other
assets in a transparent, conflict-free manner while

avoiding third-party interference. As a result, smart
contracts will become increasingly common in financial
and social systems in the near future. We present an
overview of smart contracts in this paper, including their
concept, architecture, and application scenarios. In this
research also discuss the smart contract's challenges and
present its future trends. In the future, we intend to
conduct additional research on parallel blockchain and
related smart contract applications.
This proposed system is intended to provide secure data
and a trustworthy election among democratic citizens.
Blockchain will be publicly verifiable and distributed in
such a way that it cannot be corrupted. In this research
work, a security mechanism based on blockchain
technology is designed to ensure the integrity of vote data
in an electronic voting system. The original blockchain
architecture proposed by Satoshi Nakamoto has been
modified to meet our needs for an electronic voting
system. A prototype implementation of the same is also
being developed.

4.1 Future Recommendation/Work

 It is planned to develop an encryption methodology,
preferably using hybrid techniques, in the future to
improve the security of our model and its resistance
to snooping attacks.

 Security measures will also be developed to allow
our model to withstand Denial of Service (DoS)
attacks that could affect different layers of the
network stack.

 It is also planned to upgrade the system to handle a
large number of connected devices and to improve
the model's concurrency.

 The model will be optimised to reduce the time
required to register votes and verify transactions.

 To supplement the functionality of the fingerprint
authentication system, alternative biometric
authentication mechanisms such as iris scanning,
face and voice recognition can be used.

References

[1] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V.
Santamaria, “To blockchain or not to blockchain: That is the
question,” IT Professional, vol. 20, no. 2, pp. 62–74, 2018.

[2] S. Leible, S. Schlager, M. Schubotz, and B. Gipp, “A review
on blockchain technology and blockchain projects fostering
open science,” Frontiers in Blockchain, vol. 2, Nov. 2019.
[Online].

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

156

[3] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. March- esi, “A
massive analysis of ethereum smart contracts empirical study
and code metrics,” IEEE Access, vol. 7, pp. 78 194–78 213,
2019. [Online]. Available:
https://doi.org/10.1109/access.2019.2921936

[4] D. Macrinici, C. Cartofeanu, and S. Gao, “Smart contract
applications within blockchain technology: A systematic
mapping study,” Telematics and Informatics, vol. 35, no. 8,
pp. 2337–2354, Dec. 2018. [Online].

[5] L. W. Cong and Z. He, “Blockchain disruption and smart
contracts,” Tech. Rep., Mar. 2018. [Online].

[6] B. Bodó, D. Gervais, and J. P. Quintais, “Blockchain and
smart contracts: the missing link in copyright licensing?”
International Journal of Law and Information Technology,
vol. 26, no. 4, pp. 311–336, 2018. [Online]. M. Alharby and
A. van Moorsel, “Blockchain based smart contracts : A
systematic mapping study,” in Computer Science &
Information Technology (CS & IT). Academy & Industry
Research Collaboration Center (AIRCC), Aug. 2017. [Online].

[7] C. Sillaber, B. Waltl, H. Treiblmaier, U. Gallersdörfer, and M.
Felderer, “Laying the foundation for smart contract
development: an integrated engineering process model,”
Information Systems and e- Business Management, Feb.
2020. [Online].

[8] V. Buterin, “A next-generation smart contract and de-
centralized application platform,” 2015.

[9] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of
smart contract and use cases in blockchain technology,” in
2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT).
IEEE, Jul. 2018. [Online]. Available: https://doi.org/10.1109/
icccnt.2018.8494045

[10] “Smart contracts implementation, applications, benefits, and
limitations,” Journal of Information Engineering and
Applications, Sep. 2019. [Online]. Available:
https://doi.org/10.7176/jiea/9-5-07

[11] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative
analysis of blockchain consensus algorithms,” in 2018 41st
International Convention on Information and Com- munication
Technology, Electronics and Microelectron- ics (MIPRO).
IEEE, 2018, pp. 1545–1550.

[12] “Nem ecosystem blockchain - because together, ev- erything is
possible.” https://nem.io/, (Accessed on 07/02/2021).

[13] E. Elrom, “Neo blockchain and smart contracts,” in The
Blockchain Developer. Springer, 2019, pp. 257–298.

[14] “Neo smart economy,” https://neo.org/, (Accessed on
07/02/2021).

[15] C. Dannen, Introducing Ethereum and solidity. Springer, 2017,
vol. 318.

[16] G. Wood et al., “Ethereum: A secure decentralised gen-
eralised transaction ledger,” Ethereum project yellow paper,
vol. 151, no. 2014, pp. 1–32, 2014.

[17] A. M. Antonopoulos and G. Wood, Mastering ethereum:
building smart contracts and dapps. O’reilly Media, 2018.

[18] “Home ethereum.org,” https://ethereum.org/en/, (Ac- cessed
on 07/02/2021).

[19] V.-O. Ossip, “Ethereum blockchain and hyperledger burrow
blockchain comparative analysis.”

[20] “Hyperledger burrow – hyperledger,”
https://www.hyperledger.org/use/hyperledger-burrow,
(Accessed on 07/02/2021).

[21] B. Xu, D. Luthra, Z. Cole, and N. Blakely, “Eos: An
architectural, performance, and economic analysis,” Retrieved
June, vol. 11, p. 2019, 2018.

[22] M. T. Quasim, M. A. Khan, F. Algarni, A. Alharthy, and G. M.
M. Alshmrani, “Blockchain frameworks,” in Decentralised
Internet of Things. Springer, 2020, pp. 75–89.

[23] “Home – eosio blockchain software & services,”
https://eos.io/, (Accessed on 07/02/2021).S. D. Lerner, “Rsk,”
2015.

ZAIN UL ABEDIN
Technical Team Lead
Nugenesis Pty, Ltd Australia
zainmustafaaa@hotmail.com

Muhammad Shujat Ali
IT Manager, Orange Networks,
Lahore
shujat@orangnetworks.com

Ashraf Ali
Assistant Professor & In-Charge M.Phil
(CS)
The Institute of Management Sciences,
ashraf@pakaims.edu.pk

Sana Ejaz
M.Phil (CS) – FAST National University
of
Computer and Emerging Sciences
Lahore
sani.ejaz.a@gmail.com

