DOI QR코드

DOI QR Code

동해 식물플랑크톤 군집에 대한 초미소 식물플랑크톤(< 2 ㎛) 기여도 장기 경향성 연구

Long-Term Trend of Picophytoplankton Contribution to the Phytoplankton Community in the East Sea

  • Hyo Keun Jang (Marine Research Institute, Pusan National University) ;
  • Dabin Lee (Marine Research Institute, Pusan National University) ;
  • Sang Heon Lee (Department of Oceanography and Marine Research Institute, Pusan National University)
  • 투고 : 2023.08.28
  • 심사 : 2023.10.27
  • 발행 : 2023.10.31

초록

본 연구는 2003년부터 2022년까지 동해 남서부 해역에서 초미소(0.2-2 ㎛) 식물플랑크톤의 군집, 표층 수온 상승, 그리고 무기 영양염 간의 복잡한 상호작용을 다루었다. 동해에서 관측된 표층 수온의 상승 추세는 전 지구규모의 수온 상승과 일치하며, 여름에는 최대 온도가 나타나지만 봄에는 최소 온도를 보여 일반적인 온대해역의 계절적 수온 변동과는 다른 양상을 보였다. 표층 무기 영양염의 농도는 겨울에 증가하며 봄을 거치면서 서서히 감소하는 계절적 변동성을 나타냈다. 식물플랑크톤의 생물량을 대표하는 표층 총 chlorophyll-a 농도는 온대 해역의 전형적인 쌍봉분포(bimodal distribution) 양상을 보였다. 연구 기간 동안 초미소 식물플랑크톤의 기여도는 연평균 0.5%씩 지속적으로 증가하였으나, 총 chlorophyll-a 농도는 약한 감소 추세를 보였다. 초미소 식물플랑크톤의 기여도와 영양염 간에는 강한 상관관계가 나타났으며, 이는 이러한 변동이 식물플랑크톤의 크기별 영양염의 가용성과 밀접하게 연관되어 있음을 의미한다. 이러한 분석 결과는 해양 생태계의 변화 조건에서 식물플랑크톤이 어떻게 반응할는지 예측 가능하게 하므로, 생태학적으로 중요한 의미를 갖는다.

In thi study, we unveil the intricate interplay among picophytoplankton (0.2-2 ㎛) communities, warming surface water temperatures, and major inorganic nutrients within the southwestern East Sea from 2003-2022. The observed surface temperature rise, reflecting global climate trends, defies conventional seasonal patterns in temperate seas, with highest temperatures in summer and lowest in spring. Concurrently, concentrations of major dissolved inorganic nutrient display distinct seasonality, with peaks in winter and gradually declining thereafter during spring. The time course of chlorophyll-a concentrations, a proxy for phytoplankton biomass, reveals a typical bimodal pattern for temperate seas. Notably, contributions from picophytoplankton exhibited a steady annual increase of approximately 0.5% over the study period, although the total chlorophyll-a concentrations declined slightly. The strong correlations between picophytoplankton contributions and inorganic nutrient concentrations is noteworthy, highlighting their competitively advantageous responsiveness to the shifting nutrient regime. These findings reflect significant ecological implications for the scientific insights into the marine ecosystem responses to changing climate conditions.

키워드

과제정보

이 논문은 2021년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210046, 천리안 2B호 산출물 정확도 향상 연구).

참고문헌

  1. Agawin, N. S., C. M. Duarte, and S. Agusti(2000), Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., Vol 45, No. 3, pp. 591-600. https://doi.org/10.4319/lo.2000.45.3.0591
  2. Agusti, S., J. I. Gonzalez-Gordillo, D. Vaque, M. Estrada, M. I. Cerezo, G. Salazar, J. M. Gasol, and C. M. Duarte(2015), Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump, Nat. Commun., Vol. 6, No. 3, pp. 7608.
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A., Meyer-Reil, and F. Thingstad(1983), The ecological role of water-column microbes in the sea, Marine ecology progress series. Oldendorf, Vol. 10, No. 3, pp. 257-263. https://doi.org/10.3354/meps010257
  4. Bracher, A., H. A. Bouman, R. J. Brewin, A. Bricaud, V. Brotas, A. M. Ciotti, L. Clementson, E. Devred, A. D. Cicco, S. Dutkiewicz, N. J. Hardman-Mountford, A. E. Hickman, M. Hieronymi, T. Hirata, S. N. Losa, C. B. Mouw, E. Organelli, D. E. Raitsos, J. Uitz, M. Vogt, and A. Wolanin(2017), Obtaining phytoplankton diversity from ocean color: a scientific roadmap for future development. Front. Mar. Sci., Vol. 4, pp. 55.
  5. Cavan, E. L., E. C. Laurenceau-Cornec, M. Bressac, and P. W. Boyd(2019), Exploring the ecology of the mesopelagic biological pump. Progress in Oceanography, Vol. 176, 102125.
  6. Chassot, E., F. Melin, O. Le Pape, and D. Gascuel(2007), Bottom-up control regulates fisheries production at the scale of eco-regions in European seas. Mar. Ecol. Prog. Ser., Vol. 343, pp. 45-55. https://doi.org/10.3354/meps06919
  7. Chiba, S., S. Batten, K. Sasaoka, Y. Sasai, and H. Sugisaki(2012), Influence of the Pacific Decadal Oscillation on phytoplankton phenology and community structure in the western North Pacific. Geophys. Res. Lett., Vol. 39, No. 15.
  8. Daufresne, M., K. Lengfellner, and U. Sommer(2009), Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, Vol. 106, No. 31, pp. 12788-12793. https://doi.org/10.1073/pnas.0902080106
  9. Dortch, Q., N. N. Rabalais, R. E. Turner, and N. A. Qureshi(2001), Impacts of changing Si/N ratios and phytoplankton species composition, Coastal hypoxia: consequences for living resources and ecosystems, Vol. 58, pp. 37-48. https://doi.org/10.1029/CE058p0037
  10. Friedland, K. D., C. Stock, K. F. Drinkwater, J. S. Link, R. T. Leaf, B. V. Shank, J. M. Rose, C. H. Pilskaln, and M. J. Fogarty(2012), Pathways between primary production and fisheries yields of large marine ecosystems, PloS one, Vol. 7, No. 1, e28945.
  11. Guidi, L., L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorskya(2009), Effects of phytoplankton community on production, size, and export of large aggregates: A world ocean analysis, Limnology and Oceanography, Vol. 54, No. 6, pp. 1951-1963. https://doi.org/10.4319/lo.2009.54.6.1951
  12. Han, I. S., Y. S. Suh, J. S. Lee(2013), Analysis of Long-term Oceanic Data for the Prediction of Undaria pinnatifida Aquaculture Production off the Coast of Busan, Korean J Fish Aquat Sci, Vol. 46, Issue6, pp. 941-947.
  13. Hansen, B., P. K. Bjornsen, and P. J. Hansen(1994), The size ratio between planktonic predators and their prey, Limnology and oceanography, Vol. 39, No. 2, pp. 395-403. https://doi.org/10.4319/lo.1994.39.2.0395
  14. Hildebrand, M., E. York, J. I. Kelz, A. K. Davis, L. G. Frigeri, D. P. Allison, and M. J. Doktycz(2006), Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation, J. Mater. Res., Vol. 21, No. 10, pp. 2689-2698. https://doi.org/10.1557/jmr.2006.0333
  15. Huete-Ortega, M., A. Calvo-Diaz, R. Grana, B. MourinoCarballido, and Maranon, E.(2011), Effect of environmental forcing on the biomass, production and growth rate of size-fractionated phytoplankton in the central Atlantic Ocean, J. Mar. Syst. Vol. 88, No. 2, pp. 203-213. https://doi.org/10.1016/j.jmarsys.2011.04.007
  16. Irigoien, X., J. Titelman, R. P. Harris, D. Harbour, and C. Castellani(2003), Feeding of Calanus finmarchicus nauplii in the Irminger Sea, Mar. Ecol. Prog. Ser., Vol. 262, pp. 193-200. https://doi.org/10.3354/meps262193
  17. Jang, H. K., J. J. Kang, J. H. Lee, M. Kim, S. H. Ahn, J. Y. Jeong, M. S. Yun, I. Han, and S. H. Lee(2018), Recent primary production and small phytoplankton contribution in the Yellow Sea during the summer in 2016, Ocean Sci. J., Vol. 53, pp. 509-519. https://doi.org/10.1007/s12601-018-0017-z
  18. Jang, H. K., S. H. Youn, H. Joo, Y. Kim, J. J. Kang, D. Lee, N. Jo, K. Kim, S. Kim, and S. H. Lee(2021), First concurrent measurement of primary production in the Yellow Sea, the South Sea of Korea, and the East/Japan Sea, 2018, J. mar. sci. eng., Vol. 9, No. 11, pp. 1237.
  19. Jin, J., S. M. Liu, J. L. Ren, C. G. Liu, J. Zhang, and G. L. Zhang(2013), Nutrient dynamics and coupling with phytoplankton species composition during the spring blooms in the Yellow Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., Vol. 97, pp. 16-32. https://doi.org/10.1016/j.dsr2.2013.05.002
  20. Jo, N., J. J. Kang, W. G. Park, B. R. Lee, J. H. Lee, Y. Kim, S. H. Ahn, D. Lee, J. O. Min, and S. H. Lee(2018), Carbohydrate-dominant phytoplankton and protein-high zooplankton in the northern part of the southwestern East/Japan Sea in 2015. J. Coast. Res., Vol. 85, pp. 371-375. https://doi.org/10.2112/SI85-075.1
  21. Jo, N., J. J. Kang, W. G. Park, B. R. Lee, M. S. Yun, J. H. Lee, S. M. Kim, D. Lee, H. Joo, J. H. Lee, S. H. Ahn, and S. H. Lee(2017), Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., Vol. 143, pp. 82-90. https://doi.org/10.1016/j.dsr2.2016.12.001
  22. Joo, H., J. W. Park, S. Son, J. H. Noh, J. Y. Jeong, J. H. Kwak, SSaux-Picart, J. H. Choi, C. -K. Kang, and Lee, S. H.(2014), Long term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea, J. Geophys. Res. Oceans, Vol. 119, No. 5, pp. 3002-3011. https://doi.org/10.1002/2014JC009862
  23. Joo, H., S. Son, J. W. Park, J. J. Kang, J. Y. Jeong, C. I. Lee, C. -K. Kang, and Lee, S. H.(2015), Long-term pattern of primary productivity in the East/Japan Sea based on ocean color data derived from MODIS-aqu, Remote Sens., Vol. 8, No. 1, pp. 25.
  24. Joo, H., S. Son, J. W. Park, J. J. Kang, J. Y. Jeong, J. I. Kwon, C. -K. Kim, and S. H. Lee(2017), Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the East/Japan Sea. Deep Sea Res, Part II Top. Stud. Oceanogr., Vol. 143, pp. 54-61. https://doi.org/10.1016/j.dsr2.2017.06.007
  25. Kang, D. J., S. Park, Y. G. Kim, K. Kim, and K. R. Kim(2003), A moving boundary box model (MBBM) for oceans in change: An application to the East/Japan Sea, Geophys. Res. Lett., Vol. 30, No. 6.
  26. Kang, J. J., H. Joo, J. H. Lee, J. H. Lee, H. W. Lee, D. Lee, C. K. Kang, M. S. Yun, and Lee, S. H.(2017), Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., Vol. 143, pp. 73-81. https://doi.org/10.1016/j.dsr2.2017.06.006
  27. Kang, J. J., H. K. Jang, J. H. Lim, D. Lee, J. H. Lee, H. Bae, C. H. Lee, C. -K. Kang, and Lee, S. H.(2020), Characteristics of different size phytoplankton for primary production and biochemical compositions in the Western East/Japan Sea, Front Microbiol, Vol. 11, pp. 560102.
  28. Kim, K., K. R. Kim, D. H. Min, Y. Volkov, J. H. Yoon, and M. Takematsu(2001), Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans?, Geophys. Res. Lett., Vol. 28, No. 17, pp. 3293-3296. https://doi.org/10.1029/2001GL013078
  29. Klais, R., T. Tamminen, A. Kremp, K. Spilling, and K. Olli(2011), Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom, PloS one, Vol. 6, No. 6, pp. e21567.
  30. Kwak, J. H., J. Hwang, E. J. Choy, H. J. Park, D. J. Kang, T. Lee, K. -I. Chang, K. -R. Kim, and C. K. Kang(2013), High primary productivity and f-ratio in summer in the Ulleung basin of the East/Japan Sea, Deep Sea Res. Part I Oceanogr., Vol. 79, pp. 74-85. https://doi.org/10.1016/j.dsr.2013.05.011
  31. Kwon, O. Y., and J. H. Kang(2013), Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea. Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 11, pp. 6008-6014. https://doi.org/10.5762/KAIS.2013.14.11.6008
  32. Lee, D., J. J. Kang, N. Jo, K. Kim, H. K. Jang, M. J. Kim, Y. Kim, S. Park, S. H. Son, J. I. Kwon, M. S. Yun, C. -K. Kang, and S. H. Lee(2022), Variations in phytoplankton primary production driven by the Pacific Decadal Oscillation in the East/Japan Sea, J. Geophys. Res. Biogeosci. J, Vol. 127, No. 10, e2022JG007094.
  33. Lee, D., S. H. Son, C. I. Lee, C. K. Kang, and S. H. Lee(2019b), Spatio-temporal variability of the habitat suitability index for the Todarodes pacificus (Japanese common squid) around South Korea, Remote Sens., Vol. 11, No. 23, pp. 2720.
  34. Lee, E. Y., and K. A. Park(2019), Change in the recent warming trend of sea surface temperature in the East Sea (Sea of Japan) over decades (1982-2018), Remote Sens, Vol. 11, No. 22, pp. 2613.
  35. Lee, H. W., J. H. Noh, D. H. Choi, M. Yun, P. S. Bhavya, J. J. Kang, J. H. Lee, K. W. Kim, H. K. Jang, and S. H. Lee(2021), Picocyanobacterial Contribution to the Total Primary Production in the Northwestern Pacific Ocean, Water, Vol. 13, No. 11, pp. 1610. 
  36. Lee, S. H., H. Joo, J. H. Lee, J. H. Lee, J. J. Kang, H. W. Lee, D. Lee, and C. K. Kang(2017), Seasonal carbon uptake rates of phytoplankton in the northern East/Japan Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., Vol. 143, pp. 45-53. https://doi.org/10.1016/j.dsr2.2017.04.009
  37. Lee, S. H., H. M. Joo, H. Joo, B. K. Kim, H. J. Song, M. Jeon, and S. H. Kang(2015), Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008, Polar Biol., Vol. 38, pp. 207-220. https://doi.org/10.1007/s00300-014-1579-6
  38. Lee, S. H., H. M. Joo, Z. Liu, J. Chen, and J. He(2012), Phytoplankton productivity in newly opened waters of the Western Arctic Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., Vol. 81, pp. 18-27. https://doi.org/10.1016/j.dsr2.2011.06.005
  39. Lee, S. H., J. Ryu, D. Lee, J. W. Park, J. I. Kwon, J. Zhao, and S. Son(2019a), Spatial variations of small phytoplankton contributions in the Northern Bering Sea and the Southern Chukchi Sea, GIsci Remote Sens, Vol. 56, No. 5, pp. 794-810. https://doi.org/10.1080/15481603.2019.1571265
  40. Lee, S. H., M. S. Yun, B. K. Kim, H. Joo, S. H. Kang, C. K. Kang, and T. E. Whitledge(2013), Contribution of small phytoplankton to total primary production in the Chukchi Sea, Cont. Shelf Res., Vol. 68, pp. 43-50. https://doi.org/10.1016/j.csr.2013.08.008
  41. Lee, S. H., M. S. Yun, H. K. Jang, J. J. Kang, K. Kim, D. Lee, N. Jo, S. H. Park, J. H. Lee, S. H. Ahn, D. A. Stockwell, and T. E. Whitledge(2023), Size-differential photosynthetic traits of phytoplankton in the Chukchi Sea, Cont. Shelf Res., Vol. 255, pp. 104933.
  42. Lee, S. H., S. Son, H. U. Dahms, J. W. Park, J. H. Lim, J. H. Noh, J. I. Kwon, H. T. Joo, J. Y. Jeong, and C. K. Kang(2014), Decadal changes of phytoplankton chlorophyll-a in the East Sea/Sea of Japan, Oceanology, Vol. 54, pp. 771-779. https://doi.org/10.1134/S0001437014060058
  43. Li, W. K., F. A. McLaughlin, C. Lovejoy, and E. C. Carmack(2009), Smallest algae thrive as the Arctic Ocean freshens, Science, Vol. 326, No. 5952, pp. 539-539. https://doi.org/10.1126/science.1179798
  44. Liang, Y., G. Zhang, A. Wan, Z. Zhao, S. Wang, and Q. Liu(2019), Nutrient-limitation induced diatom-dinoflagellate shift of spring phytoplankton community in an offshore shellfish farming area, Mar. Pollut. Bull., Vol. 141, pp. 1-8. https://doi.org/10.1016/j.marpolbul.2019.02.009
  45. Lim, Y. J., T. W. Kim, S. Lee, D. Lee, J. Park, B. K. Kim, K. Kim, H. K. Jang, P. S. Bhavya, and S. H. Lee(2019), Seasonal variations in the small phytoplankton contribution to the total primary production in the Amundsen Sea, Antarctica, J. Geophys. Res. Oceans, Vol. 124, No. 11, pp. 8324-8341. https://doi.org/10.1029/2019JC015305
  46. Magazzu, G., and F. Decembrini(1995), Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review, Aquat. Microb. Ecol., Vol. 9, No. 1, pp. 97-104. https://doi.org/10.3354/ame009097
  47. Maraoon, E., P. Cermeoo, J. Rodriguez, M. V. Zubkov, and R. P. Harris(2007), Scaling of phytoplankton photosynthesis and cell size in the ocean, Limnology and oceanography, Vol. 52, No. 5, pp. 2190-2198. https://doi.org/10.4319/lo.2007.52.5.2190
  48. Moran, X.A.G., A. Lopez-Urrutia, A. Calvo-Diaz, W.K.W. LI(2010), Increasing importance of small phytoplankton in a warmer ocean, Glob Chang Biol, Vol. 16, No. 3, pp. 1137-1144. https://doi.org/10.1111/j.1365-2486.2009.01960.x
  49. Park, K. W., H. J. Oh, J. D. Hwang, S. Y. Moon, M. U. Lee, and S. H. Youn(2022), Changes in phytoplankton size structure in the East Sea 2018-2020 due to marine environment change, Korean J. Environ. Biol., Vol. 40, No. 1, pp. 54-69. https://doi.org/10.11626/KJEB.2022.40.1.054
  50. Parsons, T. R.(1967), Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms, J. Oceanogr. Soc. Japan, Vol. 23, pp. 10-17. https://doi.org/10.5928/kaiyou1942.23.10
  51. Parsons, T. R., Y. Maita, and C. M. Lalli(1984), A manual of chemical & biological methods for seawater analysis, Mar. Pollut. Bull., Vol. 15, pp. 419-420. https://doi.org/10.1016/0025-326X(84)90262-5
  52. Paytan, A., and K. McLaughlin(2007), The oceanic phosphorus cycle, Chem. Rev., Vol. 107, No. 2, pp. 563-576. https://doi.org/10.1021/cr0503613
  53. Rattan, K. J.(2017), Comparative analyses of physiological assays and chlorophyll a variable fluorescence parameters: investigating the importance of phosphorus availability in oligotrophic and eutrophic freshwater systems, Aquatic Ecology, Vol. 51, pp. 359-375. https://doi.org/10.1007/s10452-017-9622-7
  54. Richardson, T. L., and G. A. Jackson(2007), Small phytoplankton and carbon export from the surface ocean, Science, Vol. 315, No. 5813, pp. 838-840. https://doi.org/10.1126/science.1133471
  55. Son, S., J. Campbell, M. Dowell, S. Yoo, and J. Noh(2005), Primary production in the Yellow Sea determined by ocean color remote sensing, Mar. Ecol. Prog. Ser., Vol. 303, pp. 91-103. https://doi.org/10.3354/meps303091
  56. Struyf, E., A. Smis, S. Van Damme, P. Meire, and D. J. Conley(2009), The global biogeochemical silicon cycle. Silicon, Vol. 1, pp. 207-213. https://doi.org/10.1007/s12633-010-9035-x
  57. Treguer, P., C. Bowler, B. Moriceau, S. Dutkiewicz, M. Gehlen, O. Aumont, L. Bittner, R. Dugdale, Z. Finke, D. Iudicone, O. Jahm, L. Guidi, M. Lasbleiz, K. Leblanc, M. Levy, and P. Pondaven(2018), Influence of diatom diversity on the ocean biological carbon pump, Nat. Geosci, Vol. 11, No. 1, pp. 27-37. https://doi.org/10.1038/s41561-017-0028-x
  58. Uitz, J. U., Y. Huot, F. Bruyant, M. Babin, and H. Claustre(2008), Relating phytoplankton photophysiological properties to community structure on large scales, Limnology and Oceanography, Vol. 53, No. 2, pp. 614-630. https://doi.org/10.4319/lo.2008.53.2.0614
  59. Uitz, J., D. Stramski, B. Gentili, F. d'Ortenzio, and H. Claustre(2012), Estimates of phytoplankton class specific and total primary production in the Mediterranean Sea from satellite ocean color observations, Glob. Biogeochem., Vol. 26, No. 2.
  60. Uitz, J., H. Claustre, B. Gentili, and D. Stramski(2010), Phytoplankton class specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations, Glob. Biogeochem., Vol. 24, No. 3.
  61. Wang Y. and Z. Gao(2020), Contrasting chlorophyll-a seasonal patterns between nearshore and offshore waters in the Bohai and Yellow Seas, China: A new analysis using improved satellite data, Cont. Shelf Res., Vol. 203, pp. 104173..
  62. Zhang, C. I., J. B. Lee, Y. I. Seo, S. C. Yoon, and S. Kim(2004), Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea, Prog. Oceanogr., Vol. 61, No. 2-4, pp. 245-265. https://doi.org/10.1016/j.pocean.2004.06.009
  63. Zhuang, Y., H. Jin, Y. Zhang, H. Li, T. Zhang, Y. Li, Y. Bai, J. Ren, and J. Chen(2021), Incursion of Alaska Coastal Water as a mechanism promoting small phytoplankton in the western Arctic Ocean, Prog. Oceanogr., Vol. 197, pp. 1026.