DOI QR코드

DOI QR Code

Therapeutic Potential of Silymarin in Inhibiting the Fibroblast-to-Myofibroblast Transition in Renal Interstitial Fibroblasts

  • Ha-Ram Kang (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Su-Bin Lim (Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine) ;
  • Cho-Long Kim (Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine) ;
  • Jung-Soon Mo (Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine) ;
  • Su Jung Park (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Han-Sol Jeong (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
  • Received : 2023.06.15
  • Accepted : 2023.07.05
  • Published : 2023.08.25

Abstract

Renal fibrosis (RF) is a prominent pathological feature of chronic kidney disease (CKD), characterized by excessive accumulation of extracellular matrix components, resulting in progressive renal function loss. The fibroblast-to-myofibroblast transition (FMT) plays a pivotal role in renal fibrosis pathogenesis, driving aberrant deposition of extracellular matrix proteins and disruption of tissue architecture. Targeting FMT has emerged as a promising strategy to combat renal fibrosis and preserve kidney function. Silymarin, a flavonoid extract derived from Silybum marianum seeds, has gained attention for its therapeutic potential, particularly in liver diseases, due to its potent antioxidant and anti-inflammatory properties. However, the precise mechanisms underlying its effects on FMT remain unclear. This study aimed to investigate the therapeutic potential of silymarin in inhibiting FMT in NRK-49F renal interstitial fibroblasts. Transforming growth factor-beta 1(TGF-β1) plays a crucial role in promoting FMT through the activation of intracellular signaling pathways and induction of key fibrotic markers, including alpha-smooth muscle actin (α-SMA) and vimentin. Silymarin demonstrated significant downregulation of FMT markers, including α-SMA and vimentin, in TGF-β1-stimulated NRK-49F cells. Our findings highlight silymarin as a promising therapeutic candidate for mitigating renal fibrosis and managing CKD.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7-11. https://doi.org/10.1016/j.kisu.2021.11.003
  2. Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther. 2023;8(1):129.
  3. Humphreys BD. Mechanisms of Renal Fibrosis. Annual review of physiology. 2018;80:309-26. https://doi.org/10.1146/annurev-physiol-022516-034227
  4. Panizo S, Martinez-Arias L, Alonso-Montes C, Cannata P, Martin-Carro B, Fernandez-Martin JL, et al. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. International journal of molecular sciences. 2021;22(1).
  5. Liu F, Zhuang S. New Therapies for the Treatment of Renal Fibrosis. Adv Exp Med Biol. 2019;1165:625-59. https://doi.org/10.1007/978-981-13-8871-2_31
  6. Yuan Q, Tan RJ, Liu YH. Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation. Renal Fibrosis: Mechanisms and Therapies. 2019;1165:253-83. https://doi.org/10.1007/978-981-13-8871-2_12
  7. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028-40. https://doi.org/10.1038/nm.2807
  8. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nature reviews Nephrology. 2016;12(6):325-38. https://doi.org/10.1038/nrneph.2016.48
  9. Meng XM, Tang PM, Li J, Lan HY. TGF-beta/Smad signaling in renal fibrosis. Frontiers in physiology. 2015;6:82.
  10. Hackett ES, Twedt DC, Gustafson DL. Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med. 2013;27(1):10-6. https://doi.org/10.1111/jvim.12002
  11. Surai PF. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel). 2015;4(1):204-47. https://doi.org/10.3390/antiox4010204
  12. Chlopcikova S, Psotova J, Miketova P, Simanek V. Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part I. Silymarin and its flavonolignans. Phytother Res. 2004;18(2):107-10. https://doi.org/10.1002/ptr.1415
  13. Hou YC, Liou KT, Chern CM, Wang YH, Liao JF, Chang SO, et al. Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-kappa B and STAT-1 activation. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010;17(12):963-73. https://doi.org/10.1016/j.phymed.2010.03.012
  14. Katiyar SK. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin. Int J Oncol. 2002;21(6):1213-22. https://doi.org/10.3892/ijo.21.6.1213
  15. Chen Y, Chen L, Yang TW. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-beta/Smad and JAK2/STAT3/SOCS1 pathway. Life sciences. 2021;271.
  16. Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother. 2021;143:112115.
  17. Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, Perales-Paton J, et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021;589(7841):281-6. https://doi.org/10.1038/s41586-020-2941-1
  18. Zhao Q, Shao T, Zhu Y, Zong G, Zhang J, Tang S, et al. An MRTF-A-ZEB1-IRF9 axis contributes to fibroblast-myofibroblast transition and renal fibrosis. Experimental & molecular medicine. 2023.
  19. Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11).
  20. Lu M, Li H, Liu W, Zhang X, Li L, Zhou H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin Pharmacol Toxicol. 2021;128(4):594-604. https://doi.org/10.1111/bcpt.13550
  21. Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, et al. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. British journal of pharmacology. 2019;176(24):4745-59. https://doi.org/10.1111/bph.14842
  22. Chen J, Du L, Li J, Song H. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis. Food Chem Toxicol. 2016;96:70-8. https://doi.org/10.1016/j.fct.2016.07.030
  23. Luo D, Xu JP, Chen XJ, Zhu X, Liu S, Li J, et al. (-)-Epigallocatechin-3-gallate (EGCG) attenuates salt-induced hypertension and renal injury in Dahl salt-sensitive rats (vol 10, 4783, 2020). Scientific reports. 2020;10(1).
  24. Zhu QQ, Yang XY, Zhang XJ, Yu CJ, Pang QQ, Huang YW, et al. EGCG targeting Notch to attenuate renal fibrosis via inhibition of TGFbeta/Smad3 signaling pathway activation in streptozotocin-induced diabetic mice. Food Funct. 2020;11(11):9686-95. https://doi.org/10.1039/D0FO01542C
  25. Zhang HF, Wang YL, Gao C, Gu YT, Huang J, Wang JH, et al. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-kappaB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin. 2018;39(12):1855-64.
  26. Saller R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs. 2001;61(14):2035-63. https://doi.org/10.2165/00003495-200161140-00003
  27. Gazak R, Walterova D, Kren V. Silybin and silymarin--new and emerging applications in medicine. Current medicinal chemistry. 2007;14(3):315-38. https://doi.org/10.2174/092986707779941159
  28. Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14(3):226-46.