DOI QR코드

DOI QR Code

Effect of Cudrania tricuspidata Leaf and Achyranthes japonica Nakai Complex in MIA-Induced Osteoarthritis Rats

꾸지뽕나무 잎과 우슬 복합물이 MIA로 골관절염이 유도된 Rat에 미치는 영향

  • Kil-Ho Cheong (Department of Pathology, College of Korean Medicine, Daejeon University) ;
  • In-Hwan Joo (Department of Pathology, College of Korean Medicine, Daejeon University) ;
  • Dong-Hee Kim (Department of Pathology, College of Korean Medicine, Daejeon University)
  • 정길호 (대전대학교 한의과대학 병리학교실) ;
  • 주인환 (대전대학교 한의과대학 병리학교실) ;
  • 김동희 (대전대학교 한의과대학 병리학교실)
  • Received : 2023.04.28
  • Accepted : 2023.06.25
  • Published : 2023.06.25

Abstract

This study was to investigate the effects of cudrania tricuspidata leaf and achyranthes japonica nakai complex (CAC) treatment on monosodium iodoacetate (MIA)-induced osteoarthritis rats. Osteoarthritis was induced by injection of MIA (3 mg) into right knee joints of rats. The rats were divided into 5 groups; Non-induced normal rat (Con, n=10), MIA-induced osteoarthritis rat (MIA, n=10), osteoarthritis rat treated with indomethacin 2 mg/kg (Indo, n=10), osteoarthritis rat treated with CAC 200 mg/kg (Low, n=10) or 400 mg/kg (High, n=10). The rats were treated orally for 14 days. On the last day of oral administration, the hind paw weight bearing of the experimental animals was measured using an incapacitance test meter. The interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), cartilage oligomeric matrix protein (COMP) and, C-telopeptides of type II collagen (CTX-II) levels in serum were measured by ELISA. And Then, that gene expression (IL-1β, IL-6, TNF-α, COX-2) levels in cartilage were measured by qRT-PCR. Also, cartilage volume was measured by micro CT arthrography. Administration of CAC reduced the inflammatory cytokine (IL-1β, IL-6, TNF-α, PGE2) levels in serum and gene expression levels in cartilage, and the COMP and CTX-II level in serum, which is an indicator of cartilage degradation. In addition, the hind paw weight bearing and cartilage volume, which were decreased due to osteoarthritis, were significantly increased. In the future, if the results of clinical studies including studies on safety are supplemented, it is considered that it can be used as an oriental medicine treatment to improve or treat symptoms of osteoarthritis.

Keywords

References

  1. Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis and cartilage. 2015;23(8):1233-41. https://doi.org/10.1016/j.joca.2015.03.036
  2. Chow YY, Chin K-Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators of inflammation. 2020;2020.
  3. Yorifuji M, Sawaji Y, Endo K, Kosaka T, Yamamoto K. Limited efficacy of COX-2 inhibitors on nerve growth factor and metalloproteinases expressions in human synovial fibroblasts. Journal of Orthopaedic Science. 2016;21(3):381-8. https://doi.org/10.1016/j.jos.2016.01.004
  4. Castaneda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochemical pharmacology. 2012;83(3):315-23. https://doi.org/10.1016/j.bcp.2011.09.018
  5. Olszewska-Slonina DM, Matewski D, Drewa G, Wozniak A, Czajkowski R, Rajewski P, et al. Oxidative equilibrium in the prophylaxis of degenerative joint changes: an analysis of pre-and postoperative activity of antioxidant enzymes in patients with hip and knee osteoarthritis. Med Sci Monit. 2010;16(5):238-45.
  6. Ou Y, Tan C, An H, Jiang D, Quan Z, Tang K, et al. Selective COX-2 inhibitor ameliorates osteoarthritis by repressing apoptosis of chondrocyte. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2012;18(6):BR247.
  7. Pecchi E, Priam S, Mladenovic Z, Gosset M, Saurel A-S, Aguilar L, et al. A potential role of chondroitin sulfate on bone in osteoarthritis: inhibition of prostaglandin E2 and matrix metalloproteinases synthesis in interleukin-1 β-stimulated osteoblasts. Osteoarthritis and cartilage. 2012;20(2):127-35. https://doi.org/10.1016/j.joca.2011.12.002
  8. Chang SH, Jung EJ, Lim DG, Oyungerel B, Lim KI, Her E, et al. Anti-inflammatory action of Cudrania tricuspidata on spleen cell and T lymphocyte proliferation. Journal of Pharmacy and Pharmacology. 2008;60(9):1221-6. https://doi.org/10.1211/jpp.60.9.0015
  9. Kim D-W, Lee W-J, Asmelash Gebru Y, Choi H-S, Yeo S-H, Jeong Y-J, et al. Comparison of bioactive compounds and antioxidant activities of Maclura tricuspidata fruit extracts at different maturity stages. Molecules. 2019;24(3):567.
  10. Han XH, Hong SS, Jin Q, Li D, Kim H-K, Lee J, et al. Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata. Journal of natural products. 2009;72(1):164-7. https://doi.org/10.1021/np800418j
  11. Lee H, Ha H, Lee JK, Seo Cs, Lee Nh, Jung DY, et al. The fruits of Cudrania tricuspidata suppress development of atopic dermatitis in NC/Nga mice. Phytotherapy Research. 2012;26(4):594-9. https://doi.org/10.1002/ptr.3577
  12. Lee YJ, Kim S, Lee SJ, Ham I, Whang WK. Antioxidant activities of new flavonoids from Cudrania tricuspidata root bark. Archives of pharmacal research. 2009;32:195-200. https://doi.org/10.1007/s12272-009-1135-z
  13. Jeong G-S, Lee D-S, Kim Y-C. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264. 7 macrophages. International Immunopharmacology. 2009;9(2):241-6. https://doi.org/10.1016/j.intimp.2008.11.008
  14. Song S-H, Ki SH, Park D-H, Moon H-S, Lee C-D, Yoon I-S, et al. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit extracts. Molecules. 2017;22(9):1489.
  15. Kim OK, Lee J. Therapeutic effects of Curdrania tricuspidata leaf extract on osteoarthritis. Journal of the Korean Society of Food Science and Nutrition. 2013;42(5):697-704. https://doi.org/10.3746/jkfn.2013.42.5.697
  16. Al-Mijan M, Park H, Lee Y, Lim B. Evaluation of the antioxidant and anti-inflammatory potential of fermented Achyranthes japonica Nakai extract. Nat Prod Chem Res. 2018;6(5):337-43.
  17. Park J, Kim I. Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poultry science. 2020;99(1):463-70. https://doi.org/10.3382/ps/pez533
  18. Iqbal Z, Shah Y, Ahmad L. Evaluation of anti-inflammatory activity of selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. Pak J Pharm Sci. 2014;27(2):365-8.
  19. Jang G-Y, Kim H-Y, Lee S-H, Kang Y-R, Hwang I-G, Woo K-S, et al. Effects of heat treatment and extraction method on antioxidant activity of several medicinal plants. Journal of the Korean society of food science and nutrition. 2012;41(7):914-20. https://doi.org/10.3746/jkfn.2012.41.7.914
  20. Kim C-S, Park Y-K. The therapeutic effect of Achyranthis Radix on the collagen-induced arthritis in mice. The Korea Journal of Herbology. 2010;25(4):129-35. https://doi.org/10.6116/KJH.2010.25.4.129
  21. Kim K-Y, Kim S-W, Kim J-K, Ko S-Y. Effects of achyranthes radix extracts on osteoblasts and osteocalsts. International Journal of Oral Biology. 2005;30(2):39-45.
  22. Jang SH, Lee SH, Lee HS, Seo Y, Song H-J, Hwang HS, et al. The effects of fermented Achyranthes japonica Radix extract on osteoarthritis model in rats. Korean Association for Laboratory Animal Science Symposium. 2015:150.
  23. HUANG Y-f, XIE X-y, LIN Q, QIU Z-w, YE J-x, FU C-l. Efficacy of Achyranthis Bidentatae Radix Against Cartilage Degeneration in Osteoarthritis: An Exploration Based on Computer Simulation. Chinese Journal of Experimental Traditional Medical Formulae. 2021:148-55.
  24. Pitcher T, Sousa-Valente J, Malcangio M. The monoiodoacetate model of osteoarthritis pain in the mouse. Journal of visualized experiments: JoVE. 2016(111).
  25. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic advances in musculoskeletal disease. 2013;5(2):77-94. https://doi.org/10.1177/1759720X12467868
  26. Gabay C. Interleukin-6 and chronic inflammation. Arthritis research & therapy. 2006;8(2):1-6. https://doi.org/10.1186/ar1917
  27. Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone research. 2022;10(1):27.
  28. Zhu J, Zhen G, An S, Wang X, Wan M, Li Y, et al. Aberrant subchondral osteoblastic metabolism modifies NaV1. 8 for osteoarthritis. Elife. 2020;9:e57656.
  29. Bi X. Correlation of serum cartilage oligomeric matrix protein with knee osteoarthritis diagnosis: a meta-analysis. Journal of orthopaedic surgery and research. 2018;13(1):1-8. https://doi.org/10.1186/s13018-017-0693-x
  30. Verma P, Dalal K. Serum cartilage oligomeric matrix protein (COMP) in knee osteoarthritis: a novel diagnostic and prognostic biomarker. Journal of Orthopaedic Research. 2013;31(7):999-1006. https://doi.org/10.1002/jor.22324
  31. Fernandes F, Pucinelli MLC, Da Silva N, Feldman D. Serum cartilage oligomeric matrix protein (COMP) levels in knee osteoarthritis in a Brazilian population: clinical and radiological correlation. Scandinavian journal of rheumatology. 2007;36(3):211-5. https://doi.org/10.1080/03009740601154186
  32. Blumenfeld O, Williams F, Hart D, Spector T, Arden N, Livshits G. Association between cartilage and bone biomarkers and incidence of radiographic knee osteoarthritis (RKOA) in UK females: a prospective study. Osteoarthritis and Cartilage. 2013;21(7):923-9. https://doi.org/10.1016/j.joca.2013.04.009
  33. El-Arman MM, El-Fayoumi G, El-Shal E, El-Boghdady I, El-Ghaweet A. Aggrecan and cartilage oligomeric matrix protein in serum and synovial fluid of patients with knee osteoarthritis. HSS Journal®. 2010;6(2):171-6. https://doi.org/10.1007/s11420-010-9157-0
  34. Henrotin Y. Osteoarthritis in year 2021: biochemical markers. Osteoarthritis and cartilage. 2022;30(2):237-48. https://doi.org/10.1016/j.joca.2021.11.001
  35. Mohan G, Perilli E, Kuliwaba JS, Humphries JM, Parkinson IH, Fazzalari NL. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis research & therapy. 2011;13:1-14. https://doi.org/10.1186/ar3543
  36. Min G-Y, Park J-M, Joo I-H, Sim B-Y, Choi H-J, Kim H-Y, et al. Effects of Chondroitin on Blood Related Pathologic Factor and Weight Bearing in MIA Osteoarthritis Model. 2019.
  37. Joo I-H, Kim D-H. Effects of Yeonsan-Ogye Egg on MIA-induced Osteoarthritis Rat. The Korea Journal of Herbology. 2017;32(6):63-9. https://doi.org/10.6116/kjh.2017.32.1.63.