DOI QR코드

DOI QR Code

Isolation and cultivation of freshwater diatom Nitzschia palea HY1 for increasing biomass and fucoxanthin production

  • Hyunji Won (Department of Environmental Science, Hanyang University) ;
  • Eunmi Ro (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Seungbeom Seo (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Baik-Ho Kim (Department of Environmental Science, Hanyang University) ;
  • EonSeon Jin (Department of Environmental Science, Hanyang University)
  • Received : 2023.06.29
  • Accepted : 2023.09.03
  • Published : 2023.09.15

Abstract

Diatoms, a type of microalgae distributed worldwide, have been identified as potential sources of biomass, lipids, and high-value compounds. While marine diatoms have been extensively studied, the potential of freshwater diatoms still needs to be explored. In this study, a novel strain of freshwater diatom was isolated from the Jungnangcheon stream located in Seoul, Republic of Korea (37°33'08.0" N, 127°02'40.0" E). This newly isolated strain was classified through phylogenetic analysis, and its morphology was investigated using light and electron microscopy; it was named Nitzschia palea HY1. N. palea HY1 grown in freshwater media (FDM) produced higher biomass (0.68 g L-1) and fucoxanthin production (9.19 mg L-1) than in conventional diatom media. Furthermore, increasing the bicarbonate concentration from 2 to 10 mM enhanced the maximum biomass and fucoxanthin production in FDM by 2.7 fold and 1.5 fold, respectively. Remarkably, the introduction of aeration to the modified FDM (MFDM) led to a substantial increase in the maximum biomass and fucoxanthin production of N. palea HY1, exhibiting 3.8-fold and 4.1-fold enhancement, respectively, compared to FDM alone. These findings suggest that optimizing the cultivation of N. palea HY1 using MFDM could provide an alternative to marine sources for fucoxanthin production.

Keywords

Acknowledgement

This research was supported by Korea Environmental Industry & Technology Institute (KEITI) through "The Project to develop eco-friendly new materials and processing technology derived from wildlife," funded by the Korea Ministry of Environment (MOE) (2021003270007).

References

  1. Andersen, R. A. & Kawachi, M. 2005. Traditional microalgae isolation techniques. In Anderson, R. A. (Ed.) Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA, pp. 83-92.
  2. Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J. -S., Jin, E. & Bae, S. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6:30620.
  3. Beakes, G. W., Canter, H. M. & Jaworski, G. H. M. 1988. Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Can. J. Bot. 66:1054-1067. https://doi.org/10.1139/b88-151
  4. Bruder, K. & Medlin, L. K. 2007. Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedwigia 85:331-352. https://doi.org/10.1127/0029-5035/2007/0085-0331
  5. Chonova, T., Kurmayer, R., Rimet, F., Labanowski, J., Vasselon, V., Keck, F., Illmer, P. & Bouchez, A. 2019. Benthic diatom communities in an alpine river impacted by waste water treatment effluents as revealed using DNA metabarcoding. Front. Microbiol. 10:653.
  6. Crowell, R. M., Nienow, J. A. & Cahoon, A. B. 2019. The complete chloroplast and mitochondrial genomes of the diatom Nitzschia palea (Bacillariophyceae) demonstrate high sequence similarity to the endosymbiont organelles of the dinotom Durinskia baltica. J. Phycol. 55:352-364. https://doi.org/10.1111/jpy.12824
  7. Finlay, B. J., Monaghan, E. B. & Maberly, S. C. 2002. Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153:261-273. https://doi.org/10.1078/1434-4610-00103
  8. Gao, B., Chen, A., Zhang, W., Li, A. & Zhang, C. 2017. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean Univ. China 16:916-924. https://doi.org/10.1007/s11802-017-3174-2
  9. Gerin, S., Delhez, T., Corato, A., Remacle, C. & Franck, F. 2020. A novel culture medium for freshwater diatoms promotes efficient photoautotrophic batch production of biomass, fucoxanthin, and eicosapentaenoic acid. J. Appl. Phycol. 32:1581-1596. https://doi.org/10.1007/s10811-020-02097-1
  10. Griffiths, M. J. & Harrison, S. T. L. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21:493-507. https://doi.org/10.1007/s10811-008-9392-7
  11. Guo, X., Tang, Y., Yin, J., Li, R., Qin, B., Jiang, L., Chen, X. & Huang, Z. 2022. Long-term manganese exposure-mediated benthic diatom assemblage in a subtropical stream: distribution, substrate preferences and Mn-tolerance. J. Environ. Manag. 322:116153.
  12. Jeong, B. -R., Jang, J. & Jin, E. 2023. Genome engineering via gene editing technologies in microalgae. Bioresour. Technol. 373:128701.
  13. Kanazawa, K., Ozaki, Y., Hashimoto, T., Das, S. K., Matsushita, S., Hirano, M., Okada, T., Komoto, A., Mori, N. & Nakatsuka, M. 2008. Commercial-scale preparation of biofunctional fucoxanthin from waste parts of brown sea algae Laminalia japonica. Food Sci. Technol. Res. 14:573-582. https://doi.org/10.3136/fstr.14.573
  14. Khaw, Y. S., Yusoff, F. M., Tan, H. T., Noor Mazli, N. A. I., Nazarudin, M. F., Shaharuddin, N. A., Omar, A. R. & Takahashi, K. 2022. Fucoxanthin production of microalgae under different culture factors: a systematic review. Mar. Drugs 20:592.
  15. Ki, J.- S. & Han, M. -S. 2005. Molecular analysis of complete SSU to LSU rDNA sequence in the harmful dinoflagellate Alexandrium tamarense (Korean isolate, HY970328M). Ocean Sci. J. 40:43-54. https://doi.org/10.1007/BF03022609
  16. Kilham, P. & Hecky, R. E. 1988. Comparative ecology of marine and freshwater phytoplankton. Limnol. Oceanogr. 33:776-795.
  17. Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E. & Herrera, L. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147-159. https://doi.org/10.1023/A:1003231628456
  18. Kim, S. M., Kang, S. -W., Kwon, O. -N., Chung, D. & Pan, C.-H. 2012. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem. 55:477-483. https://doi.org/10.1007/s13765-012-2108-3
  19. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  20. Litchman, E., Klausmeier, C. A. & Yoshiyama, K. 2009. Contrasting size evolution in marine and freshwater diatoms. Proc. Natl. Acad. Sci. U. S. A. 106:2665-2670. https://doi.org/10.1073/pnas.0810891106
  21. Lu, X., Sun, H., Zhao, W., Cheng, K. -W., Chen, F. & Liu, B. 2018. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar. Drugs 16:219.
  22. Maberly, S. C., Gontero, B., Puppo, C., Villain, A., Severi, I. & Giordano, M. 2021. Inorganic carbon uptake in a freshwater diatom, Asterionella formosa (Bacillariophyceae): from ecology to genomics. Phycologia 60:427-438. https://doi.org/10.1080/00318884.2021.1916297
  23. Marella, T. K., Lopez-Pacheco, I. Y., Parra-Saldivar, R., Dixit, S. & Tiwari, A. 2020. Wealth from waste: diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci. Total Environ. 724:137960.
  24. Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9:359-372. https://doi.org/10.1029/95GB01070
  25. Seth, K., Kumar, A., Rastogi, R. P., Meena, M., Vinayak, V. & Harish. 2021. Bioprospecting of fucoxanthin from diatoms: challenges and perspectives. Algal Res. 60:102475.
  26. Smetacek, V. 1999. Diatoms and the ocean carbon cycle. Protist 150:25-32. https://doi.org/10.1016/S1434-4610(99)70006-4
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Tiam, S. K., Lavoie, I., Doose, C., Hamilton, P. B. & Fortin, C. 2018. Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology 27:675-688. https://doi.org/10.1007/s10646-018-1945-1
  29. Treguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M. & Pondaven, P. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11:27-37. https://doi.org/10.1038/s41561-017-0028-x
  30. Trobajo, R., Clavero, E., Chepurnov, V. A., Sabbe, K., Mann, D. G., Ishihara, S. & Cox, E. J. 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48:443-459. https://doi.org/10.2216/08-69.1
  31. Trobajo, R., Mann, D. G., Chepurnov, V. A., Clavero, E. & Cox, E. J. 2006. Taxonomy, life cycle, and auxosporulation of Nitzschia fonticola (Bacillariophyta). J. Phycol. 42:1353-1372. https://doi.org/10.1111/j.1529-8817.2006.00291.x
  32. Vilmi, A., Karjalainen, S. M., Landeiro, V. L. & Heino, J. 2015. Freshwater diatoms as environmental indicators: evaluating the effects of eutrophication using species morphology and biological indices. Environ. Monit. Assess. 187:243.
  33. Wang, S., Wu, S., Yang, G., Pan, K., Wang, L. & Hu, Z. 2021. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol. Adv. 53:107865.
  34. Xia, S., Wang, K., Wan, L., Li, A., Hu, Q. & Zhang, C. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar. Drugs 11:2667-2681. https://doi.org/10.3390/md11072667
  35. Xiao, H., Zhao, J., Fang, C., Cao, Q., Xing, M., Li, X., Hou, J., Ji, A. & Song, S. 2020. Advances in studies on the pharmacological activities of fucoxanthin. Mar. Drugs 18:634.
  36. Yang, R., Wei, D. & Xie, J. 2020. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit. Rev. Biotechnol. 40:993-1009. https://doi.org/10.1080/07388551.2020.1805402