DOI QR코드

DOI QR Code

Sedimentary Facies and Environments of the SSDP-101 Long-core in a Submarine Sand Ridge in the Korea Strait

대한해협 해저사퇴 심부코어 SSDP-101의 퇴적상과 퇴적환경

  • Seong-Pil Kim (Marine Geology & Energy Research Division, Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Woo-Hun Ryang (Division of Science Education and Institute of Science Education, Jeonbuk National University)
  • 김성필 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 양우헌 (전북대학교 과학교육학부/과학교육연구소)
  • Received : 2023.09.25
  • Accepted : 2023.10.10
  • Published : 2023.10.31

Abstract

A long core SSDP-101 of 77 m in a submarine sand ridge on the Korea Strait shelf was studied to understand the formation process of the sand ridge. The long core was drilled at 128°16.335'N in latitude and 34°19.666'E in longitude (WGS-84) on the top of the sand ridge of 60-m water depth. Marine geological analyses of the SSDP-101 long-core samples can reveal the changing sedimentary environments in the Korea Strait Shelf caused by relative sea-level changes during the late Quaternary. The lower parts of the core samples were interpreted as episodic stream-flooding sediments occurring in an estuarine environment. The sand ridge of the study area formed when the relative sea level was lower than the present sea level, and the sand ridge sediments were winnowed by the relative sea level rise. The submarine sand ridge in the modern shelf is interpreted that the sand ridge of the lower sea level has remained to the present higher sea level.

대한해협 대륙붕 해저사퇴의 형성과정을 이해하기 위해 77 m 심도 심부 SSDP-101 코어를 연구하였다. 이 심부코어는 WGS 측지계 기준으로 북위 128도 16.335분, 동경 34도 19.666분에 위치한 수심 60 m의 사퇴 정상부에서 시추하였다. SSDP-101 코어 시료의 해양지질학적 분석은 제4기 후기 상대 해수면 변화에 의해 야기된 대한해협 대륙붕 퇴적환경의 변화를 밝혔다. 하부 코어 퇴적층은 간헐적 하천 범람이 일어나는 염하구 환경에서 형성된 것으로 해석되었다. 연구 지역의 사퇴는 상대해수면이 현재보다 더 낮은 시기에 형성되었고, 사퇴 퇴적물은 상대해수면이 상승함에 따라 키질작용을 받았다. 현재 대륙붕의 해저사퇴는 해수면이 낮았던 시기의 해저사퇴가 현재 해수면 환경까지 잔존된 결과로 해석된다.

Keywords

Acknowledgement

논문을 심사해 주신 익명의 심사위원께 감사드립니다. 이 논문은 첫 번째 저자의 박사학위 논문의 일부 내용을 보완하여 재작성한 것이다. 이 논문은 한국지질자원연구원의 3D 해저 정밀영상화를 위한 복합 탄성파 탐사 및 실규모 고분해능 처리기술 개발 사업(GP2020-023) 지원에 의해 수행되었다. 또한 한국연구재단의 연구과제(NRF-2022R1F1A1063126) 지원에 의해 수행되었다.

References

  1. Anderson, J.B., Wallace, D.J., Rodriguez, A.B., Simms, A.R., and Milliken, K.T., 2022, Holocene evolution of the Western Louisiana-Texas coast, USA: Response to sea-level rise and climate change. Geological Society of America, Memoir 221, 81 p.
  2. Bae, S.H., Kong, G.S., Yoo, D.G., and Kim, D.C., 2018, Incised channel morphology and depositional fill of the paleo-Seomjin River in the continental shelf of the South Sea, Korea. Quaternary International, 468, 49-61. https://doi.org/10.1016/j.quaint.2017.03.053
  3. Bahk, J.J. and Kim, S.P., 2016, Marine geological mapping of the Korean seas: Achievements and future. Proceedings of the 2016 Fall Joint Conference of the Geological Sciences, Oct. 27th. 2016, 83. (in Korean with English abstract)
  4. Bahng, H.K,, Min, G.H., and Oh, J.-K., 1995, Sedimentary Environment of Bimodal Shelf Sediments: Southern continental shelf of Korean Peninsula. Journal of the Korean Society of Oceanography, 30, 1-12. (in Korean with English abstract)
  5. Bhattacharya, J. P. and Walker, R. G., 1992, Deltas, In: Walker, R. G. and James, N. P. (eds.), Facies models, response to sea level change. Geological Association of Canada, 157-178.
  6. Chang, J.-H. and Chun, S.-S., 2001, Formation and evolution of the Paleo-Seomjin river incised-valley system, southern coast of Korea: 1. Sequence stratigraphy of late Quaternary sediments in Yosu Strait. Journal of the Korean Society of Oceanography, 6, 142-151. (in Korean with English abstract)
  7. Choi, J.Y. and Park, Y.A., 1993, Distribution and textural characters of the bottom sediments on the continental shelves, Korea. Journal of Oceanographic Society of Korea, 28, 259-271.
  8. Choi, J.Y., Park, Y.A., and Choi, K.W., 1995, Heavy mineral sands on the southeastern continental shelf of Korea. Journal of Korean Society of Oceanography, 30, 271-278.
  9. Clifton, H.E., 2006, A reexamination of facies models for clastic shorelines. In: Posamentier, H.W. and Walker, R.G. (eds.), Facies models revisited: SEPM Special Publication 84, 293-337.
  10. Cooper, J.A.G., Green, A.N., Meireles, R., Klein, A.H.F., De Abreu, J.G.N., and Toldo, E.E., 2019, Tidal strait to embayment: Seismic stratigraphy and evolution of a rock-bounded embayment in the context of Holocene sea level change. Marine Geology, 415, 105972, https://doi.org/10.1016/j.margeo.2019.105972.
  11. Dalrymple, R.W., 1992, Tidal depositional system. In: Walker, R.G. and James, N.P. (eds.), Facies models, response to sea level change, Geological Association of Canada, 195-218.
  12. Dyer, K.R. and Huntley, D.A., 1999, The origin, classification and modelling of sand banks and ridges. Continental Shelf Research, 19, 1285-1330. https://doi.org/10.1016/S0278-4343(99)00028-X
  13. Folk, R.L., 1981, Petrology of sedimentary rocks. Hemphill's, 170 p.
  14. Ginburg, R.N., 1975, Tidal deposits. Springer-Verlag, 5-89.
  15. GSA (The Geological Society of America), 1991, Rock-Color Chart with Genuine Munsell Color Chips.
  16. Hamilton, E.L., 1971, Prediction of in situ acoustic and elastic properties of marine sediments. Geophysics, 36, 266-284. https://doi.org/10.1190/1.1440168
  17. Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y., and Li, C., 2001, Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 177, 331-351. https://doi.org/10.1016/S0025-3227(01)00165-7
  18. KHOA 2023a, http://www.khoa.go.kr/oceanmap/main.do# (September 3rd 2023)
  19. KHOA, 2023b, https://fliphtml5.com/gyjfg/bnnj/Ocean_atlas_Review_1102/ (September 18th 2023)
  20. KIGAM, 1984, Geological study on the shallow water [1984]. 83-submarine resource-2-15, 146 p. (in Korean with English abstract)
  21. KIGAM, 1985, Geological study on the shallow water [1985]. KR-85-18, 150 p. (in Korean with English abstract)
  22. KIGAM, 1986, Geological study on the shallow water [1986]. KR-86-20, 128 p. (in Korean with English abstract)
  23. KIGAM, 1987, Geological study on the shallow water [1986]. KR-86-2-20, 149 p. (in Korean with English abstract)
  24. KIGAM, 1988, Geological study on the shallow water [1987]. KR-87-26, 105 p. (in Korean with English abstract)
  25. KIGAM, 1998, Study on Quaternary Stratigraphy and environmental changes in South Sea, Korea (2). K-R99[B]-01, 82p. (in Korean with English Abstract)
  26. KIGAM, 2000, Study on Quaternary stratigraphy and environmental changes in Korea sea (analyses of SSDP-101, SSDP-102, SSDP-103, SSDP-104, SSDP-105 cores). KR-00(B)-02, 677 p. (in Korean with English abstract)
  27. KIGAM, 2008, Standardization of geological information for the intercommunity and distribution. NP2007-014-2008(2), 373 p. (in Korean with English Abstract)
  28. KIGAM, 2016, Study on marine geology and mineral resources in buried paleochannel of Seomjin River, South Sea. GP2015-040-2016(2), 180 p. (in Korean with English Abstract)
  29. KIGAM, 2023, https://data.kigam.re.kr/komm/geo/frame.do (September 3rd 2023)
  30. Kim, D.C., Kim, G.Y., Yi, H.I., Seo, Y.K., Lee, G.S., Jung, J.H., and Kim, J.C. 2012, Geoacoustic provinces of the South Sea shelf off Korea. Quaternary International, 263, 139-147. https://doi.org/10.1016/j.quaint.2012.02.035
  31. Kim, D.C., Sung, J.Y., Park, S.C., Lee, G.H., Choi, J.H., Kim, G.Y., Seo, Y.K., and Kim, J.C., 2001, Physical and acoustic properties of shelf sediments, the South Sea of Korea. Marine Geology, 179, 39-50. https://doi.org/10.1016/S0025-3227(01)00200-6
  32. Kim, S.P., 2002, Late Quaternary stratigraphy and depositional environments of the continental shelf sequences off the southeastern coast of Korea. Unpublished Ph.D. dissertaion, Seoul National University, Seoul, Korea, 81 p. (in Korean with English abstract)
  33. Kim, S.P., Lee, C.W., Lee, G.S., Koo, B.Y., and Yoo, D.G., 2013, Geological and geophysical mapping of the Korean seas. Journal of Hydrographic Society of Korea, 2, 3-12. (in Korean)
  34. Klein, G. deV., 1976, Holocene tidal sedimentation. Benchmark Papers in Geology, 30. Dowden, Hutchinson & Ross Inc., 423 p.
  35. KMA, 2023. https://www.weather.go.kr/w/typhoon/typ-stat.do (September 18th 2023)
  36. KNOC, 2023, https://www.knoc.co.kr/sub03/sub03_1_2.jsp (September 3rd 2023)
  37. KORDI (Korea Ocean Reseach and Development Institute), 1990, Studies on the ocean current structure in the Korea Strait (third year). BSPG 00115-320-1, 34 p. (in Korean)
  38. Min, G.H., 1994, Seismic stratigraphy and depositional history of Pliocene-Holocene deposits in the southeastern shelf, Korean peninsula. Upublished Ph.D. dissertaion, Seoul National University, Seoul, Korea, 196 p. (in Korean)
  39. Park, S.C., Han, H.-S., and Yoo, D.G., 2003, Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in high-energy environments. Marine Geology, 193, 1-18. https://doi.org/10.1016/S0025-3227(02)00611-4
  40. Park, S.C. and Lee, S.D., 1994, Depositional patterns of sand ridges in tide-dominated shallow water environments: Yellow Sea coast and South Sea of Korea. Marine Geology, 120, 89-103. https://doi.org/10.1016/0025-3227(94)90079-5
  41. Park, S.C. and Yoo, D.G., 1988, Depositional history of Quaternary sediments on the continental shelf off the southeastern coast of Korea (Korea Strait). Marine Geology, 79, 65-75. https://doi.org/10.1016/0025-3227(88)90157-0
  42. Park, S.C., Yoo, D.G., Lee, C.W., and Lee, E.L., 2000, Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait. Geo-Marine Letters, 20, 64-71. https://doi.org/10.1007/s003670000039
  43. Park, Y.A. and Choi, J.Y., 1986, Factor analysis of the continental shelf sediments of the southeast coast of Korea and its implication of the depositional environments. Journal of Oceanographic Society of Korea, 21, 34-45. (in Korean)
  44. Park, Y.A. and Khim, B.K., 1992, Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology, 104, 205-213. https://doi.org/10.1016/0025-3227(92)90095-Y
  45. Park, Y.A. and Yi, H.I., 1995, Late Quaternary climatic changes and sea-level history along the Korean coasts. Journal of Coastal Research special issue no. 17: Holocene cycles, climate, sea levels, and sedimentation, 163-168.
  46. Plint, A., James, N.P., and Dalrymple, R.W., 2010, Wave-and storm-dominated shoreline and shallow-marine systems. In: James, N.P., and Dalrymple, R.W. (eds.), Facies models 4, St. John's, Geological Association of Canada, 167-199.
  47. Reineck, H.-E. and Singh, I. B., 1980, Depositional sedimentary environment with reference to terrigenous clastics. Springer-Verlag, 130 p.
  48. Reinson, G.E., 1992, Transgressive barrier island and estuarine systems. In: Walker, R.G. and James, N.P. (eds.), Facies models, response to sea level change. Geological Association of Canada, 179-194.
  49. Rine, J.M., Tillman, R. W., Stubblefield, W.L., and Swift, D.J.P., 1986, Lithostratography of Holocene sand ridges from the nearshore and middle continental shelf of New Jersey, U.S.A. In: Modern and ancient shelf clastics: A core workshop, SEPM Core Workshop 9, 1-72.
  50. Ryang W.H., Simms, A.R., Yoon, H.H., Chun, S.S., and Kong, G.S., 2022, Last interglacial sea-level proxies in the Korean Peninsula. Earth System Science Data, 14, 117-142. https://doi.org/10.5194/essd-14-117-2022
  51. Swift, D.J.P., 1968, Coastal erosion and transgressive stratigraphy. Journal of Geology, 76, 444-456. https://doi.org/10.1086/627342
  52. Teague, W. J., Perkins, H. T., Jacobs, G. A., and Book, J. W., 2001, Tide observations in the Korea-Tsushima Strait. Continental Shelf Research, 21, 545-561. https://doi.org/10.1016/S0278-4343(00)00110-2
  53. Um, I.K., Kim, S.P., and Bahk, J.J., 2018, Marine geological mapping of the Korean seas: achievements and future. Proceedings of the 73rd Regular General Meeting of the Geological Society of Korea and the 2018 Fall Joint Conference of the Geological Sciences, Oct. 24th. 2018, 31. (in Korean)
  54. Yoo, D.G., Hong, S.H., Lee, G.S., Kim, J.C., Yoon, H.H., and Cheong, D., 2020, Stratigraphic evolution of the Nakdong River valley in response to late Quaternary sea-level changes. Marine Geology, 427, 106243.
  55. Yoo, D.G., Kim, S.P., Lee, C.W., Chang, T.S., Kang, N.K., and Lee, G.S., 2014, Late Quaternary transgressive deposits in a low-gradient environmental setting: Korea Strait shelf, SE Korea. Quaternary International, 344, 143-155. https://doi.org/10.1016/j.quaint.2014.03.034
  56. Yoo, D.G., Lee, G.S., Kim, G.Y., Kang, N.K., Yi, B.Y., Kim, Y.J., Chun, J.H., and Kong, G.S., 2016, Seismic stratigraphy and depositional history of late Quaternary deposits in a tide-dominated setting: An example from the eastern Yellow Sea. Marine and Petroleum Geology, 73, 212-227. https://doi.org/10.1016/j.marpetgeo.2016.03.005
  57. Yoon, H.H., Ryang, W.H., Chun, S.S., Simms, A.R., Kim, J.C., Chang, T.S., Yoo, D.G., and Hong, S.H., 2023, Coastal switching of dominant depositional processes driven by decreasing rates of Holocene sea-level rise along the macrotidal coast of Gochang, SW Korea. Journal of Sedimentary Research, 93, 20-36. https://doi.org/10.2110/jsr.2021.023