DOI QR코드

DOI QR Code

대기모델링(WRF)을 이용한 미세먼지의 발생과 지형학적 유입 특성 연구

A Study on the Generation of Fine Dust and Topographical Inflow Characteristics Using Atmospheric Modeling (WRF)

  • 최현정 (한국과학기술원(KAIST) 부설 한국과학영재학교 물리지구과학부) ;
  • 박창현 (부산대학교 환경연구원) ;
  • 이강열 (부산대학교 대기환경과학과)
  • Hyun Jeong Choi (Department of Physics & Earth Science, Korea Science Academy of KAIST) ;
  • Changhyoun Park (Institute of Environmental Studies, Pusan National University) ;
  • Kangyeol Lee (Department of Atmospheric Science, Pusan National University)
  • 투고 : 2023.06.29
  • 심사 : 2023.10.30
  • 발행 : 2023.10.31

초록

본 연구는 복잡한 도심주변의 지형과 다양한 배출원이 존재하고 있는 세종시 부강면과 조치원읍 일원을 대상으로 대기오염 확산의 물리적인 특성을 분석하여 오염 물질의 확산을 가정했을 때의 특징을 분석하였다. 부강면의 경우 토지의 기복이 심한 전형적인 분지형지역으로서, 대기오염물질의 확산이 불량하여 대기 오염이 심화되는 지형상의 특성을 내포하고 있다. 지형조건의 특성상 강한 풍속으로 이류된 대기오염물질의 확산이 용이하지 않아 국지적으로 정체되어 대기오염물질의 공간적 확산 보다는 정체에 의한 대기 환경 악화의 간접 요인이 될 수 있음을 나타낸다. 또한 이러한 경우 지형적 가열율의 차이 등에 의한 급속한 온도 상승 경향이 나타날 가능성이 있어 향후 먼지 돔현상(dust dome) 등과 관련하여 오염물질의 확산과 관련한 정책제안에 있어서 세심한 논의가 필요하다. 고농도와 비고농도 사례 일을 분석했을 때 조치원읍의 경우 부강면에 비하여 주변 배출원의 영향이 다소 높은 상태이다. 또한 고농도과 비고농도의 사례에 대한 분석에서 특정한 풍계에 따라 고농도일의 사례가 됨과 동시에 지형적으로 경사지에 속해 서쪽에서 이류된 오염물질이 쉽게 유입되는 상황으로 분석된다. 이러한 국지 지형에 따른 난류특성 변수들인 마찰속도(friction velocity), 확산속도(convective velocity), 현열 속(sensible heat flux) 등에 의한 연직 혼합고는 대기오염물질의 확산강도에 중요한 요인임을 알 수 있었다. 이와 관련하여 배출원관리에 따른 논의가 부강면 사례에서 보다는 조치원읍에서 상대적으로 필요함을 분석하였다.

This study used the Weather Research and Forecasting (WRF) model to examine the physical characteristics of air pollution diffusion in the areas of Bukang-myeon and Jochiwon-eup in Sejong City, where complex topography and various emission sources exist around the city center, and then analyzed the characteristics under assumed diffusion of pollutants. The area of Bukang-myeon is a typical basin-type area with a lot of relief. It has topographical features that cause air pollution to be intensified due to poor diffusion. Such topographical conditions hinder the spread of air pollutants advected by strong winds, and the pollution stagnates locally, suggesting that congestion, rather than spatial diffusion, is an indirect factor deteriorating the atmospheric environment. In addition, there may be a tendency for rapid temperature rise due to differences in topographical heating rates, etc., so careful discussion is needed when developing policy proposals related to the spread of pollutants in the future in consideration of the dust dome phenomenon. Compared to the case of Bukang-myeon, considering high and non-high concentration case days, the influence of nearby emission sources in Jochiwon-eup is somewhat higher. An analysis of high concentration days and non-high concentration days showed that high concentration days occur under wind of a particular direction. Pollutants advected from the west easily flow into the area due to its topographic slope geography. The vertical mixing height attributable to friction velocity, convective velocity, and sensible heat flux, which are turbulence characteristic variables dependent on the local topography, has an important effect on the diffusion intensity of air pollutants. Consequently, strategies for management of emission sources are relatively more necessary in Jochiwon-eup than in Bukang-myeon.

키워드

과제정보

본 연구는 과학기술정보통신부의 지원을 받아 KAIST 부설 한국과학영재학교의 프로그램의 일환으로 수행되었습니다.

참고문헌

  1. Atkinson, B. W., 1981, Meso-Scale Atmospheric Circulations, In. Academic Press, London, 495 pp.
  2. Benjey, W., Houyoux, M., and Susick, J., 2001, Implementation of the SMOKE emission data processor and SMOKE tool input data processor in models-3, U.S. EPA.
  3. Choi, H. J., Lee, S. H., and Kim, H. S., 2015, The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling, Journal of Korean Earth Sci. Soc., v. 36, no. 3, 210-221. (in Korean) https://doi.org/10.5467/JKESS.2015.36.3.210
  4. Choi, H. J., Park, S. J., Seo, Y. J., and Kim, D. W., 2020, A Study on the Prediction of Residual Probability of Fine Dust in Complex Urban Area, Journal of Korean Earth Sci. Soc., v. 41, no. 2, 111-128. (in Korean) https://doi.org/10.5467/JKESS.2020.41.2.111
  5. Coulter, R. l., 1979, A comparison of three methods for measuring mixing-layer height. Amer. Meteo. Soc., 18, 1495-1499. https://doi.org/10.1175/1520-0450(1979)018<1495:ACOTMF>2.0.CO;2
  6. Daejeon Sejong institute, 2020, Designation and operation plan of fine dust concentration management in Sejong city, 124 pp. (in Korean)
  7. Dudhia, J., 1993, A nonhydrostatic version of the Penn state-NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front, Mon. Wea., Rev., 121, 1493-1513 https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
  8. Emery, C., Tai, E., and Yarwood, G., 2001, Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes, Prepared for the Texas Natural Resource Conservation Commission. ENVIRON International Corporation, Novato, CA.
  9. Hirt, C. W. and Cox, J. L., 1972, Calculating Three-Dimensional Flows around Structures and over Rough Terrain., Journal of Computational Physics, 10, 324-340. https://doi.org/10.1016/0021-9991(72)90070-8
  10. Hong, S.Y. and Pan, H. L., 1996, Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Monthly Weather Rev. 124. 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  11. Hong, S. Y., and J. Lim, J. O., 2006, The WRF single moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151
  12. Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer mod els. J. Geophys. Res. Atmos., 113, D13103
  13. Jeon, J. G., 1995, Characteristics of turbulence intensity by stability in the surface layer of Korea, Journal of the Korean Meteorological Society, 31(2), 169-185. (in Korean)
  14. Kain, J. S., 2004, The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor
  15. Kang, B. W., Lee, H. S., 2015, Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City, Journal of Korean Society for Atmospheric Environment, 31(5), 477-489. https://doi.org/10.5572/KOSAE.2015.31.5.437
  16. Kim, H. S., Kim, J. M., and Sohn, J. J., 2012, An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009, Journal of the Korean earth science society, 33, 269-279. (in Korean) https://doi.org/10.5467/JKESS.2012.33.3.269
  17. Kim, S. W., Park, S. W., and Lee, B. R., 1997, Changes in SO2, NOx, CO and O3 Concentrations According to Synoptic Meteorological Fields, Journal of the Korean Meteorological Society, 33(2), 273-287. (in Korean)
  18. Kim, J. Y., 2019, A Study on Characteristics and Countermeasures of Fine Dust Discharge Sources in Cheongju, J. of Korea geographies 8(3) 399-415. (in Korean) https://doi.org/10.25202/JAKG.8.3.5
  19. Kimura, F. and Kuwagata, T., 1993, Thermally induced wind passing from plain to basin over a mountain range, J. Appl. Meteor., 32(1993), 1538-1547. https://doi.org/10.1175/1520-0450(1993)032<1538:TIWPFP>2.0.CO;2
  20. Koo, H. S., Kim, H. D., Yun, W. T., and Lee, S. H., 2010, Variation of regional circulations d-ue to long-term change land-use in the Daegu Metropolitan region from 100 years. Asia-Pacific Journal of Atmospheric Science, 46, 53-64. (in Korean) https://doi.org/10.1007/s13143-010-0006-3
  21. Kuwagata T, Sumioka, M., Masuko, N., and J. Kondo, 1990, The Daytime PBL Heating Process over Complex Terrain in Central Japan under Fair and Calm Weather Conditions Part I :Meso-scale Circulation and the PBL Heating Rate Journal of the Meteorological Society of Japan Vol. 68, No.6 625-638. https://doi.org/10.2151/jmsj1965.68.6_625
  22. Lee, S. H. and Kimura, F., 2001, Comparative studies in the local circulation induced by land-use and by topography. Bound. Layer Met., 101, 157-182. https://doi.org/10.1023/A:1019219412907
  23. Lee, H. W., Choi, H. J., and Lee K. Y., 2005, The effect of the detailed bottom boundary condition and numerical interpolation on the simulation of the air flow field with complex topography. J. of Korean Meteorological Society, 41(1), 73-87. (in Korean)
  24. Lee, H. W., Choi, H. J., Lee, K. Y., Lee, S. W., and Sung, K., H., 2006, The effect of using detailed landuse conditions for the phochemical modeling of Seoul, Korea, Journal of the Korean meteorological society, 42(2), 57-73. (in Korean)
  25. Lee, S. H., 2011, A numerical study on the characteristics of high resolution wind resource in mountainous areas using computational fluid dynamic analysis, Journal of Korean Earth Science Society, 32(1), 46-56. (in Korean) https://doi.org/10.5467/JKESS.2011.32.1.46
  26. Mahrer, Y. and Pielke, R. A., 1977, The effects of topography on sea and land breezes in a two-dimensional numerical model, Mon. Weath. Rev. 105, 1151-1162. https://doi.org/10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2
  27. National Institute of Environmental Research (NIER), 1994 National air pollutants emission, http://airemiss.nier.go.kr/mbshome/mbs/airemiss/index.do (accessed on Oct 29, 2019).
  28. Pedro, A., 2011, A Revised Scheme for the WRF Surface Layer Formulation, MONTHLY WEATHER REVIEW140, 898-917. https://doi.org/10.1175/MWR-D-11-00056.1
  29. Tewari, M., and Coauthors, E., 2004, Implementation and verification of the unified NOAH land surface model in the WRF model. Extended Abstract, 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 14, 11-15.
  30. Tong, H., Walton, A., J., Johnny C. L., 2005, Numerical simulation of the urban boundary layer over the complex terrain of Hong Kong, J. Atmos. Envir. 39, 3549-3563. https://doi.org/10.1016/j.atmosenv.2005.02.045
  31. Son, K.W., 2021, Municipality-Level Source Apportionment of PM2.5 Concentrations based on the CAPSS 2016: (VI) Chungcheongbuk-do, Journal of Korean Society for Atmospheric Environment Vol. 37, No. 3, 429-455. (in Korean) https://doi.org/10.5572/KOSAE.2021.37.3.429