DOI QR코드

DOI QR Code

CPT-based dynamic p-y analysis method for seismic design of piles embedded in clay

  • Garam Kim (Research Institute of Korea Electric Power Corporation) ;
  • Jiyeong Lee (School of Civil and Environmental Engineering, Yonsei University) ;
  • Jonghyeog Yoon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Qaisar Abbas (School of Civil and Environmental Engineering, Yonsei University) ;
  • Junhwan Lee (School of Civil and Environmental Engineering, Yonsei University)
  • Received : 2022.03.01
  • Accepted : 2023.10.24
  • Published : 2023.11.10

Abstract

In this study, a dynamic p-y curve method for the seismic design of laterally loaded pile in clay was proposed focusing on the direct application of the cone penetration test (CPT) result. Key motivation of this study was to fully utilize the continuous and in-situ profiling capability of CPT, which was particularly effective for multi-layered, heterogeneous soil conditions and offshore environment. The exerted dynamic load response of pile was expressed and obtained by introducing the static stiffness and damping of clay into the dynamic p-y curve function, both formulated as a function of the cone resistance. The proposed CPT-based dynamic p-y curve function was employed in the pseudo-static analysis based on an equivalent static-load approach. A calculation algorithm was prepared to implement the proposed method, following the procedure of the pseudo-static analysis. Case examples were selected, including centrifuge tests and field load tests, and adopted to compare measured and predicted dynamic pile load responses. The compared results of the case examples confirmed that the proposed method was effective and beneficial for the seismic design of piles in clay.

Keywords

Acknowledgement

This research was conducted with the support of the "National R&D Project for Smart Construction Technology (No. RS-2020-KA156488)" funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport, and managed by the Korea Expressway Corporation. It was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2020R1A2C201196614).

References

  1. API (2010), Recommended practice for planning, designing and constructing fixed offshore platforms - Working stress design. RP 2A-WSD, 21st ed. Supplement 4, American Petroleum Institute; Washington, DC., USA.
  2. ASCE (2013), Minimum design loads for buildings and other structures. ASCE/SEI 7-10, American Society of Civil Engineers; Reston, VA, USA.
  3. Assimaki, D. and Gazetas, G. (2009), "A simplified model for lateral response of large diameter caisson foundations-Linear elastic formulation", Soil Dyn. Earthq. Eng., 29(2), 268-291. https://doi.org/10.1016/j.soildyn.2008.02.001.
  4. Baligh, M.M. (1975), "Theory of deep static cone penetration resistance", Report No. R75-56; Dept. of Civ. and Envir. Eng., Massachusetts Institute of Technology, Cambridge, MA, USA.
  5. Blaney. G.W. and O'Neill. M.W. (1986), "Analysis of dynamic laterally loaded pile in clay", J. Geotech. Eng., 112(9), 827-840. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:9(827).
  6. Bowles, L.E. (1996), Foundation analysis and design, (5th Ed.), McGraw-hill, New York, NY, USA.
  7. Boulanger, R.W., Curras, J.C., Kuter, B.L., Wilson, D.W. and Abghari, A. (1999), "A seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).
  8. Bradley, B.A. (2012), "The seismic demand hazard and importance of the conditioning intensity measure", Earthq. Eng. Struct. D., 41(11), 1417-1437. https://doi.org/10.1002/eqe.2221.
  9. Bouafia, A. (2017), "Laterally loaded single piles-construction of p-y curves from cone penetration test", Proceeding of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, S. Korea.
  10. Charney, F.A. (2015), Seismic loads: Guide to the seismic load provisions of ASCE 7-10, ASCE, Reston, VA, USA
  11. Dunnavant, T.W. and O'Neill, M.W. (1989), "Experimental p-y model for submerged, stiff clay", J. Geotech. Eng., 115(1), 95-114. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(95).
  12. DNV-OS-J101 (2013), Design of offshore wind turbine structures. Det Norske Veritas; Oslo, Norway.
  13. Gazetas, G. (1991), Foundation vibrations. In Foundation Engineering Handbook, (2nd ed.), Springer,553-593. New York, NY, USA.
  14. Hussein, A.F. and EI Naggar, M.H. (2021), "Seismic axial behavior of pile groups in non-liquefiable and liquifiable soils", Soil Dynam. Earthq. Eng., 149, 106853. https://doi.org/10.1016/j.soildyn.2021.106853.
  15. ISO (2004), Petroleum and natural gas industries - Specific requirements for offshore structures - Part 2, seismic design procedures and criteria. ISO/DIS 19901-2, International Organization for Standardization, Switzerland.
  16. ICC (2012), International building code, International Code Council, Washington, DC., USA.
  17. Kim, G., Park, D., Kyung, D. and Lee, J. (2014), "CPT-based lateral displacement analysis using p-y method for offshore mono-piles in clays", Geomech. Eng., 7(4), 459-475. http://dx.doi.org/10.12989/gae.2014.7.4.000.
  18. Kim, G.D. Kyung, D.P. and Lee, J. (2016), "CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions", Geomech. Eng., 9(3), 313-328. http://dx.doi.org/10.12989/gae.2015.9.3.313.
  19. Kim, J., Kim, G. and Lee, J. (2022), "Dynamic p-y analysis method based on cone penetration test results for monopiles in sand", Soil Dyn. Earthq. Eng., 163(107503). https://doi.org/10.1016/j.soildyn.2022.107503.
  20. Kementzetzidis, E., Pisano, F. and Metrikine, A.V. (2022), "A memory-enhanced p-y model for piles in sand accounting for cyclic ratcheting and gapping effects", Comput. Geotech., 148(104810). https://doi.org/10.1016/j.compgeo.2022.104810.
  21. Lee, J., Kim, M. and Kyung, D. (2010), "Estimation of lateral load capacity of rigid short piles in sands using CPT results", J. Geotech. Geoenviron. Eng., 136(1), 48-56. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000199.
  22. Lee, J. and Randolph, M. (2011), "Penetrometer-based assessment of spudcan penetration resistance", J. Geotech. Geoenviron. Eng., 137(6), 587-96. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000469.
  23. Li, W., Zhu, B. and Yang, M. (2017), "Static response of monopile to lateral load in overconsolidated dense sand", J. Geotech. Geoenviron. Eng., 143(7), 04017026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001698.
  24. Liu, X., Gai, G., Liu, L., Liu, S., Duan, W. and Puppala, A.J. (2021), "Improved p-y curve models for large diameter and super-long cast-in-place piles using piezocone penetration test data" Comput. Geotech., 130, 103911. https://doi.org/10.1016/j.compgeo.2020.103911.
  25. Lombardi, D., Dash, S.R., Bhattacharya, S., Ibraim, E., Muirwood, D. and Taylor, C.A. (2017), "Construction of simplified p-y curves for liquefied soils", Geotechnique, 67, 617-626. https://doi.org/10.1680/jgeot.15.P.116.
  26. Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Proceedings of the 2nd Offshore Tech. Conf., Houston, Texas, 577-594. https://doi.org/10.4043/1204-MS.
  27. Mahar. L.J. and O'Neill. M.W. (1983), "Geotechnical characterization of desiccated clay", J. Geotech. Geoenviron. Eng., 109(1), 56-71. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(56).
  28. Mayne, P.W. and Rix, G.J. (1995), "Correlations between shear wave velocity and cone tip resistance in natural clays", Soils Found., 35(2), 107-110. https://doi.org/10.3208/sandf1972.35.2_107.
  29. Mir, M., Bouafia, A., Rahmani, K., and Aouali, N. (2017), "Analysis of load-settlement behavior of shallow foundations in saturated clays based on CPT and DPT tests", Geomech. Eng., 13(1), 119-139. https://doi.org/10.12989/gae.2017.13.1.119.
  30. Mitra, T., Chattopadhyay, K.K. and Ghosh, A. (2021), "Analysis of pile under seismic motion using pseudo-static approach", Geohazards, 86, 335-344. https://doi.org/10.1007/978-981-15-6233-4_23.
  31. El Naggar, M.H.E. and Bentley, K.J. (2000), "Dynamic analysis for laterally loaded piles and dynamic p-y curves", Can. Geotech. J., 37(6), 1166-1183. https://doi.org/10.1139/t00-058.
  32. Novak, M. (1991), "Piles under dynamic loads", Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2433-2456. St. Louis, MO: University of Missouri-Rolla.
  33. Reese, L., Cox, W. and Koop, F. (1975), "Field testing and analysis of laterally loaded piles in stiff clays", Proceedings of the 7th Offshore Tech. Conf., OTC 2312, Houston, Texas. https://doi.org/10.4043/2312-MS.
  34. Suryasentana, S.K. and Lehane, B.M. (2014), "Numerical derivation of CPT-based p-y curves for piles in sand", Geotechnique, 64(3), 186-194. https://doi.org/10.1680/geot.13.P.026.
  35. Suryasentana, S.K. and Lehane, B.M. (2016), "Updated CPT-based p-y formulation for laterally loaded piles in cohesionless soil under static loading", Geotechnique, 66(6), 445-453. https://doi.org/ 10.1680/jgeot.14.P.156.
  36. Teh, C.I. and Houlsby, G.T. (1991), "An analytical study of the cone penetration test in clay", Geotechnique, 41(1), 17-34. https://doi.org/10.1680/geot.1991.41.1.17.
  37. Titi, H.H., Mohammad, L.N. and Tumay, M.T. (2000), "Miniature cone penetration tests in soft and stiff clays", Geotech. Test. J., 23(4), 432-443. https://doi.org/10.1520/GTJ11064J.
  38. Tabesh, A. and Poulos, H.G. (2001), "Pseudostatic approach for seismic analysis of single piles", J. Geotech. Geoenviron. Eng., 127(9), 757-765. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(757).
  39. Tumay, M.T. and Kurup, P.U. (2001), "Development of a continuous intrusion miniature cone penetration test system for subsurface explorations", Soils Found., 41(6), 129-138. https://doi.org/10.3208/sandf.41.6_129.
  40. Tott-Buswell, J., Garala, T.K., Prendergast, L.J., Madabhushi, S.P.G. and Rovithis, E. (2022), "Seismic response of piles in layered soils: Performance of pserudostatic Winkler models against centrifuge data", Soil Dyn. Earthq. Eng., 153(107110). https://doi.org/10.1016/j.soildyn.2021.107110.
  41. Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Fond. Divi. ASCE, 98(3), 265-290. https://doi.org/10.1061/JSFEAQ.0001740.
  42. Yu, H.S., Herrmann, L.R. and Boulanger, R.W. (2000), "Analysis of steady cone penetration in clay", J. Geotech. Geoenviron. Eng., 126(7), 594-605. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(594).
  43. Yang, E., Choi, J., Kwon, S. and Kim, M. (2011), "Development of dynamic p-y backbone curves for a single pile in dense sand by 1g shaking table tests", KSCE J. Civil Eng., 15(5), 813-821. https://doi.org/10.1007/s12205-011-1113-0.
  44. Zhang, D.B., Jiang, Y. and Yang, X.L. (2019), "Estimation of 3D active earth pressure under nonlinear strength condition", Geomech. Eng., 17(6), 515-525. https://doi.org/10.12989/gae.2019.17.6.515.
  45. Zhang, Y., Knut, H. and Philippe, J. (2020), "Verification of a framework for cyclic p-y curves in clay by hindcast of Sabine River, SOLCYP and centrifuge laterally loaded pile tests", Appl. Ocean Res., 97, 102085. https://doi.org/10.1016/j.apor.2020.102085.