References
- Anil, O., Akbas, S.O., Babagiray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223.
- Bottero, A., Negre, R., Pastor, J. and Turgeman, S. (1980), "Finite element method and limit analysis theory for soil mechanics problems", Comput. Method. Appl. M., 22, 131-149. https://doi.org/10.1016/0045-7825(80)90055-9.
- Christoph, S. and Lavasan, A.A. (2019), "Bearing capacity of a strip footing placed next to an existing footing on frictional soil", Soils Found., 1-10. https://doi.org/10.1016/j.sandf.2020.03.002.
- Chungsik, Y. and Shuaishuai, C. (2020), "Effect of new tunnel construction on structural performance of existing tunnel lining", Geomech. Eng., 22(6), 497-507. https://doi.org/10.12989/gae.2020.22.6.497.
- Das, B. and Larbi-Cherif, S. (1983), "Bearing capacity of two closely-spaced shallow foundations on sand", Soils Found, 23, 1-7. https://doi.org/10.3208/sandf1972.23.1.
- Drucker, D., Prager, W. and Greenberg, H. (1952), "Extended limit design theorems for continuous media", Quart. Appl. Math., 9, 381-389. https://doi.org/10.1090/qam/45573.
- Ebid, A.M. and Onyelowe, K.C. (2022), "Behavior of strip footing rested on undrained clay using consistency limits-based constitutive law", Heliyon, 8(1), https://doi.org/10.1016/j.heliyon.2022.e11520.
- Ebid, A.M., Onyelowe, K.C. and Arinze, E.E. (2021), "Estimating the ultimate bearing capacity for strip footing near and within slopes using AI (GP, ANN, and EPR) techniques", J. Eng., https://doi.org/10.1155/2021/3267018.
- Ebid, A.M., Onyelowe, K.C. and Salah, M. (2022), "Estimation of bearing capacity of strip footing rested on bilayered soil profile using FEM-AI-coupled techniques", Adv. Civil Eng., 2022, https://doi.org/10.1155/2022/8047559.
- Ebid, A.M., Onyelowe, K.C. and Salah, M. (2022), "Load-settlement curve and subgrade reaction of strip footing on bilayered soil using constitutive FEM-AI coupled techniques", Designs, 6(6), 104. https://doi.org/10.3390/designs6060104.
- Ebid, A.M., Onyelowe, K.C., Salah, M. and Adah, E.I. (2023), "Using FEM-AI Technique to predict the behavior of strip footing rested on undrained clay layer improved with replacement and geo-grid", Civil Eng. J., 9(5), https://doi.org/10.28991/CEJ-2023-09-05-014.
- Ghazavi, M. and Lavasan, A.A. (2008), "Interference effect of shallow foundations constructed on sand reinforced with geosynthetics", Geotext. Geomembranes, 26(5), 404-415. https://doi.org/10.1016/j.geotexmem.2008.02.003.
- Ghazavi, M., Norouzi, M. and Fazeli Dehkordi, P. (2023), "Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study", Geomech. Eng., 32(6), 653-671. https://doi.org/10.12989/gae.2023.32.6.653.
- Ghosh, P. and Kumar, S.R. (2011), "Interference effect of two nearby strip surface footings on cohesionless layered soil", Int. J. Geotech. Eng., 5(1), 87-94. https://doi.org/10.3328/IJGE.2011.05.01.87-94.
- Ghosh, P., Basudhar, P.K. Srinivasan, V. and Kunal, K. (2015), "Experimental studies on interference of two angular footings resting on surface of two-layer cohesionless soil deposit", Int. J Geotech. Eng., 9(4), 422-433. https://doi.org/10.1179/1939787914Y.0000000080.
- Griffiths, D.V., Fenton, G.A. and Manoharan, N. (2006), "Undrained bearing capacity of two-strip footings on spatially random soil", Int. J. Geomech., 6(6), 421-425. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421).
- Hansen, J. (1970), "A revised and extended formula for bearing capacity", Bulletin of the Danish Geotechnical Institute, 28, 5-11.
- Hazell, E. (2004), "Interaction of closely spaced strip footings", Final year project report, Department of Engineering. Science, University of Oxford.
- Hjiaj, M., Lyamin, A. and Sloan, S. (2005), "Numerical limit analysis solutions for the bearing capacity factor nγ", Int. J. Solids Struct., 42, 1681-1704. https://doi.org/10.1016/j.ijsolstr.2004.08.002.
- Kouzer, K. and Kumar, J. (2010), "Ultimate bearing capacity of a footing considering the interference of an existing footing on sand", Geotech. Geol. Eng., 28, 457-470. https://doi.org/10.1007/s10706-010-9305-9.
- Krabbenhoft, K., Lyamin, A.V., Hjiaj, M.M. and Sloan, S.W. (2005), "A new discontinuous upper bound limit analysis formulation", Int. J. Numer. Meth. Eng, 63(7), 1069-1088. https://doi.org/10.1002/nme.1314.
- Kumar, A. and Saran, S. (2003), "Closely spaced footings on geogrid-reinforced sand", J. Geotech. Geoenviron. Eng., 129, 660-664. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(660).
- Kumar, J. and Bhoi, M.K. (2009), "Interference of two closely spaced strip footings on sand using model tests", J Geotech. Geoenviron. Eng., 134(4), 595-604. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(595).
- Kumar, J. and Ghosh, P. (2007), "Ultimate bearing capacity of two interfering rough strip footings", Int. J. Geomech., 7(1), 53-62. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(53).
- Kumar, J. and Kouzer, K.M. (2008), "Bearing capacity of two interfering footings", Int. J. Numer. Anal. Method. Geomech., 32(3), 251-264. https://doi.org/10.1002/nag.625.
- Lavasan, A.A., Ghazavi, M., Von Blumenthal, A. and Schanz, T. (2018), "Bearing capacity of interfering strip footings", J. Geotech. Geoenviron. Eng., 144, 04018003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001824.
- Lyamin, A.V. and Sloan, S.W. (2002a), "Lower bound limit analysis using non-linear programming", Int. J. Numer. Method. Eng., 55(5), 573- 611. https://doi.org/10.1002/nme.511.
- Lyamin, A.V. and Sloan, S.W. (2002b), "Upper bound limit analysis using linear finite elements and non-linear programming", Int. J. Numer. Anal. Method. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198.
- Lysmer, J. (1970), "Limit analysis of plane problems in soil mechanics", J. Soil Mech. Found.
- Mabrouki, A., Benmeddour, D., Frank, R. and Mellas, M. (2010), "Numerical study of the bearing capacity for two interfering strip footings on sands", Comput. Geotech., 37(4), 431-439. https://doi.org/10.1016/j.compgeo.2009.12.007
- Merifielda, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43, 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
- Merifielda, R.S., Sloan, S.W. and Yu, H.S. (2001), "Stability of plate anchors in undrained clay", Geotechnique, 51(2), 141-153. https://doi.org/10.1680/geot.2001.51.2.14.
- Meyerhof, G. (1957), "The ultimate bearing capacity of foundations on slopes", Proceedings of the 4th Int. Conf. on Soil Mechanics and Foundation Engineering.
- Oberhollenzer, S., Tschuchnigg, F. and Schweiger, H. (2018), "Finite element analyses of slope stability problems using non-associated plasticity", J. Rock Mech. Geotech. Eng., 10, 1091-1101. https://doi.org/10.1016/j.jrmge.2018.09.002.
- OptumG2. (2021), "Finite element program for geotechnical analysis", Optum Computational Engineering, www.optumce.com.
- Saran, S. and Agarwal, V.C. (1974), "Interference of surface footings on sand", Indian Geotech. J., 4(2), 129-139.
- Sarvesh, R., Srinivasan, V. and Patel, A. (2023), "Elastic settlements of identical angular footings in close proximity", Geomech. Eng., 32(2), 193-207. https://doi.org/10.12989/gae.2023.32.2.193.
- Schmudderich, C., Lavasan, A.A., Tschuchnigg, F. and Wichtmann, T. (2020), "Behavior of nonidentical differently loaded interfering rough footings", J. Geotech. Geoenviron. Eng. Forthcoming, 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002255.
- Shiau, J.S., Lyamin, A.V. and Sloan, S.W. (2003), "Bearing capacity of a sand layer on clay by finite element limit analysis", Can. Geotech. J., 900-915. https://doi.org/10.1139/t03-042.
- Sloan, S.W. (1989), "Upper bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Method. Geomech., 13, 263-282. https://doi.org/10.1002/nag.1610130304
- Sloan, S.W. (2013), "Geotechnical stability analysis", Ge'otechnique, 63, 531-572. https://doi.org/10.1680/geot.12.RL.001.
- Srinivasan, V. and Ghosh, P. (2013), "Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil", Geomech. Geoeng., 8(2), 97-106. https://doi.org/10.1080/17486025.2012.695401.
- Stuart, J.G. (1962), "Interference between foundations with special reference to surface footings in sand", Geo-technique, 12(1), 15-22. https://doi.org/10.1680/geot.1962.12.1.15.
- Terzaghi, K. (1943), "Theoretical soil mechanics", New York: John Wiley & Sons.
- Ukritchon, B., Whittle, A. and Klangvijit, C. (2003), "Calculations of bearing capacity factor Nγ using numerical limit analyses", J. Geotech. Geoenviron. Eng., 129, 468-474. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(468).
- Van-Linh, N., Jae-Min, K. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/eri.2019.19.5.407.
- Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found, Div., 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.
- West, J.M. and Stuart, J.G. (1962), "Oblique loading resulting from interference between surface footings on sand", Proceedings of the 6th Int. Conf. on Soil Mechanics and Foundation Eng., Montreal: University of Toronto Press. https://www.issmge.org/publications/online-library.
- Xiao, Y., Zhao, M., Zhao, H. and Zhang, R. (2018b), "Finite element limit analysis of the bearing capacity of strip footing on a rock mass with voids", Int. J. Geomech., 18(9), 04018108. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001262.
- Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan, S.W. and Abbo, A.J. (2013), "Stability of dual circular tunnels in cohesive-frictional soil subjected to surcharge loading", Comput. Geotech., 50, 41-54. https://doi.org/10.1016/j.compgeo.2012.12.008.
- Zhang, R., Chen, G., Zou, J., Zhao, L. and Jiang, C. (2019), "Stability of dual circular tunnels in a rock mass subjected to surcharge loading", Comput. Geotech., 108, 257-268. https://doi.org/10.1016/j.compgeo.2019.01.004.