DOI QR코드

DOI QR Code

Finite element limit analysis of the bearing capacity of an obliquely loaded strip footing on granular soil placed adjacent to vertically loaded existing footing

  • R. Sarvesh (Department of Civil Engineering, Visvesvaraya National Institute of Technology) ;
  • V. Srinivasan (Department of Civil Engineering, Visvesvaraya National Institute of Technology) ;
  • Anjan Patel (Department of Civil Engineering, Visvesvaraya National Institute of Technology)
  • Received : 2023.04.05
  • Accepted : 2023.10.12
  • Published : 2023.11.10

Abstract

The present study explores the impact of strip footing's ultimate load-carrying capacity on granular soil under oblique loads. At the same time, it is lined up subsequently nearer to the existing footing. The numerical simulations have been done by finite element limit analysis (FELA). Upper-bound (UB), lower-bound (LB) and adaptive mesh refinement proficiencies have been harnessed to predict the précised solution for assessing the new footing ultimate load-carrying capacity under oblique loading while lined up subsequently nearer to vertically loaded existing footing. The impact of the new footing's ultimate load-carrying capacity has been well-considered by considering characteristics such as load inclination, angle of internal friction of the soil, footing width and spacing between the footings. The outcome of the current numerical analysis for isolated footing and interfering footing has been validated using accessible literature. For various soil friction angles, load inclination on the new footing interference (ξ) factors was computed using different spacing ratios for symmetrical and asymmetrical footing widths. The charts were developed for the new footing lined up nearer to the existing footing in response to interference factor that varies with the spacing ratio, load inclination and width ratio of the new footing.

Keywords

References

  1. Anil, O., Akbas, S.O., Babagiray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223.
  2. Bottero, A., Negre, R., Pastor, J. and Turgeman, S. (1980), "Finite element method and limit analysis theory for soil mechanics problems", Comput. Method. Appl. M., 22, 131-149. https://doi.org/10.1016/0045-7825(80)90055-9.
  3. Christoph, S. and Lavasan, A.A. (2019), "Bearing capacity of a strip footing placed next to an existing footing on frictional soil", Soils Found., 1-10. https://doi.org/10.1016/j.sandf.2020.03.002.
  4. Chungsik, Y. and Shuaishuai, C. (2020), "Effect of new tunnel construction on structural performance of existing tunnel lining", Geomech. Eng., 22(6), 497-507. https://doi.org/10.12989/gae.2020.22.6.497.
  5. Das, B. and Larbi-Cherif, S. (1983), "Bearing capacity of two closely-spaced shallow foundations on sand", Soils Found, 23, 1-7. https://doi.org/10.3208/sandf1972.23.1.
  6. Drucker, D., Prager, W. and Greenberg, H. (1952), "Extended limit design theorems for continuous media", Quart. Appl. Math., 9, 381-389. https://doi.org/10.1090/qam/45573.
  7. Ebid, A.M. and Onyelowe, K.C. (2022), "Behavior of strip footing rested on undrained clay using consistency limits-based constitutive law", Heliyon, 8(1), https://doi.org/10.1016/j.heliyon.2022.e11520.
  8. Ebid, A.M., Onyelowe, K.C. and Arinze, E.E. (2021), "Estimating the ultimate bearing capacity for strip footing near and within slopes using AI (GP, ANN, and EPR) techniques", J. Eng., https://doi.org/10.1155/2021/3267018.
  9. Ebid, A.M., Onyelowe, K.C. and Salah, M. (2022), "Estimation of bearing capacity of strip footing rested on bilayered soil profile using FEM-AI-coupled techniques", Adv. Civil Eng., 2022, https://doi.org/10.1155/2022/8047559.
  10. Ebid, A.M., Onyelowe, K.C. and Salah, M. (2022), "Load-settlement curve and subgrade reaction of strip footing on bilayered soil using constitutive FEM-AI coupled techniques", Designs, 6(6), 104. https://doi.org/10.3390/designs6060104.
  11. Ebid, A.M., Onyelowe, K.C., Salah, M. and Adah, E.I. (2023), "Using FEM-AI Technique to predict the behavior of strip footing rested on undrained clay layer improved with replacement and geo-grid", Civil Eng. J., 9(5), https://doi.org/10.28991/CEJ-2023-09-05-014.
  12. Ghazavi, M. and Lavasan, A.A. (2008), "Interference effect of shallow foundations constructed on sand reinforced with geosynthetics", Geotext. Geomembranes, 26(5), 404-415. https://doi.org/10.1016/j.geotexmem.2008.02.003.
  13. Ghazavi, M., Norouzi, M. and Fazeli Dehkordi, P. (2023), "Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study", Geomech. Eng., 32(6), 653-671. https://doi.org/10.12989/gae.2023.32.6.653.
  14. Ghosh, P. and Kumar, S.R. (2011), "Interference effect of two nearby strip surface footings on cohesionless layered soil", Int. J. Geotech. Eng., 5(1), 87-94. https://doi.org/10.3328/IJGE.2011.05.01.87-94.
  15. Ghosh, P., Basudhar, P.K. Srinivasan, V. and Kunal, K. (2015), "Experimental studies on interference of two angular footings resting on surface of two-layer cohesionless soil deposit", Int. J Geotech. Eng., 9(4), 422-433. https://doi.org/10.1179/1939787914Y.0000000080.
  16. Griffiths, D.V., Fenton, G.A. and Manoharan, N. (2006), "Undrained bearing capacity of two-strip footings on spatially random soil", Int. J. Geomech., 6(6), 421-425. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421).
  17. Hansen, J. (1970), "A revised and extended formula for bearing capacity", Bulletin of the Danish Geotechnical Institute, 28, 5-11.
  18. Hazell, E. (2004), "Interaction of closely spaced strip footings", Final year project report, Department of Engineering. Science, University of Oxford.
  19. Hjiaj, M., Lyamin, A. and Sloan, S. (2005), "Numerical limit analysis solutions for the bearing capacity factor nγ", Int. J. Solids Struct., 42, 1681-1704. https://doi.org/10.1016/j.ijsolstr.2004.08.002.
  20. Kouzer, K. and Kumar, J. (2010), "Ultimate bearing capacity of a footing considering the interference of an existing footing on sand", Geotech. Geol. Eng., 28, 457-470. https://doi.org/10.1007/s10706-010-9305-9.
  21. Krabbenhoft, K., Lyamin, A.V., Hjiaj, M.M. and Sloan, S.W. (2005), "A new discontinuous upper bound limit analysis formulation", Int. J. Numer. Meth. Eng, 63(7), 1069-1088. https://doi.org/10.1002/nme.1314.
  22. Kumar, A. and Saran, S. (2003), "Closely spaced footings on geogrid-reinforced sand", J. Geotech. Geoenviron. Eng., 129, 660-664. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(660).
  23. Kumar, J. and Bhoi, M.K. (2009), "Interference of two closely spaced strip footings on sand using model tests", J Geotech. Geoenviron. Eng., 134(4), 595-604. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(595).
  24. Kumar, J. and Ghosh, P. (2007), "Ultimate bearing capacity of two interfering rough strip footings", Int. J. Geomech., 7(1), 53-62. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(53).
  25. Kumar, J. and Kouzer, K.M. (2008), "Bearing capacity of two interfering footings", Int. J. Numer. Anal. Method. Geomech., 32(3), 251-264. https://doi.org/10.1002/nag.625.
  26. Lavasan, A.A., Ghazavi, M., Von Blumenthal, A. and Schanz, T. (2018), "Bearing capacity of interfering strip footings", J. Geotech. Geoenviron. Eng., 144, 04018003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001824.
  27. Lyamin, A.V. and Sloan, S.W. (2002a), "Lower bound limit analysis using non-linear programming", Int. J. Numer. Method. Eng., 55(5), 573- 611. https://doi.org/10.1002/nme.511.
  28. Lyamin, A.V. and Sloan, S.W. (2002b), "Upper bound limit analysis using linear finite elements and non-linear programming", Int. J. Numer. Anal. Method. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198.
  29. Lysmer, J. (1970), "Limit analysis of plane problems in soil mechanics", J. Soil Mech. Found.
  30. Mabrouki, A., Benmeddour, D., Frank, R. and Mellas, M. (2010), "Numerical study of the bearing capacity for two interfering strip footings on sands", Comput. Geotech., 37(4), 431-439. https://doi.org/10.1016/j.compgeo.2009.12.007
  31. Merifielda, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43, 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
  32. Merifielda, R.S., Sloan, S.W. and Yu, H.S. (2001), "Stability of plate anchors in undrained clay", Geotechnique, 51(2), 141-153. https://doi.org/10.1680/geot.2001.51.2.14.
  33. Meyerhof, G. (1957), "The ultimate bearing capacity of foundations on slopes", Proceedings of the 4th Int. Conf. on Soil Mechanics and Foundation Engineering.
  34. Oberhollenzer, S., Tschuchnigg, F. and Schweiger, H. (2018), "Finite element analyses of slope stability problems using non-associated plasticity", J. Rock Mech. Geotech. Eng., 10, 1091-1101. https://doi.org/10.1016/j.jrmge.2018.09.002.
  35. OptumG2. (2021), "Finite element program for geotechnical analysis", Optum Computational Engineering, www.optumce.com.
  36. Saran, S. and Agarwal, V.C. (1974), "Interference of surface footings on sand", Indian Geotech. J., 4(2), 129-139.
  37. Sarvesh, R., Srinivasan, V. and Patel, A. (2023), "Elastic settlements of identical angular footings in close proximity", Geomech. Eng., 32(2), 193-207. https://doi.org/10.12989/gae.2023.32.2.193.
  38. Schmudderich, C., Lavasan, A.A., Tschuchnigg, F. and Wichtmann, T. (2020), "Behavior of nonidentical differently loaded interfering rough footings", J. Geotech. Geoenviron. Eng. Forthcoming, 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002255. 
  39. Shiau, J.S., Lyamin, A.V. and Sloan, S.W. (2003), "Bearing capacity of a sand layer on clay by finite element limit analysis", Can. Geotech. J., 900-915. https://doi.org/10.1139/t03-042.
  40. Sloan, S.W. (1989), "Upper bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Method. Geomech., 13, 263-282. https://doi.org/10.1002/nag.1610130304
  41. Sloan, S.W. (2013), "Geotechnical stability analysis", Ge'otechnique, 63, 531-572. https://doi.org/10.1680/geot.12.RL.001.
  42. Srinivasan, V. and Ghosh, P. (2013), "Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil", Geomech. Geoeng., 8(2), 97-106. https://doi.org/10.1080/17486025.2012.695401.
  43. Stuart, J.G. (1962), "Interference between foundations with special reference to surface footings in sand", Geo-technique, 12(1), 15-22. https://doi.org/10.1680/geot.1962.12.1.15.
  44. Terzaghi, K. (1943), "Theoretical soil mechanics", New York: John Wiley & Sons.
  45. Ukritchon, B., Whittle, A. and Klangvijit, C. (2003), "Calculations of bearing capacity factor Nγ using numerical limit analyses", J. Geotech. Geoenviron. Eng., 129, 468-474. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(468).
  46. Van-Linh, N., Jae-Min, K. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/eri.2019.19.5.407.
  47. Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found, Div., 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.
  48. West, J.M. and Stuart, J.G. (1962), "Oblique loading resulting from interference between surface footings on sand", Proceedings of the 6th Int. Conf. on Soil Mechanics and Foundation Eng., Montreal: University of Toronto Press. https://www.issmge.org/publications/online-library.
  49. Xiao, Y., Zhao, M., Zhao, H. and Zhang, R. (2018b), "Finite element limit analysis of the bearing capacity of strip footing on a rock mass with voids", Int. J. Geomech., 18(9), 04018108. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001262.
  50. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan, S.W. and Abbo, A.J. (2013), "Stability of dual circular tunnels in cohesive-frictional soil subjected to surcharge loading", Comput. Geotech., 50, 41-54. https://doi.org/10.1016/j.compgeo.2012.12.008.
  51. Zhang, R., Chen, G., Zou, J., Zhao, L. and Jiang, C. (2019), "Stability of dual circular tunnels in a rock mass subjected to surcharge loading", Comput. Geotech., 108, 257-268. https://doi.org/10.1016/j.compgeo.2019.01.004.