DOI QR코드

DOI QR Code

A Study on the Estimation of Emission Intensity and Response for Greenhouse Gas Reduction in the Lime Industry

석회 산업의 온실가스 감축을 위한 원단위 산정 및 대응 방안 연구

  • Seok-je Kwon (Korea Institute of Limestone and Advanced Materials) ;
  • Jin-sang Cho (Korea Institute of Limestone and Advanced Materials) ;
  • Young-jin Kim (Korea Institute of Limestone and Advanced Materials) ;
  • Yang-soo Kim (Korea Institute of Limestone and Advanced Materials) ;
  • Jun-hyung Seo (Korea Institute of Limestone and Advanced Materials)
  • 권석제 (한국석회석신소재연구소) ;
  • 조진상 (한국석회석신소재연구소) ;
  • 김영진 (한국석회석신소재연구소) ;
  • 김양수 (한국석회석신소재연구소) ;
  • 서준형 (한국석회석신소재연구소)
  • Received : 2023.10.11
  • Accepted : 2023.10.21
  • Published : 2023.10.31

Abstract

The lime industry accounts for about 75% of greenhouse gases generated from process emissions, and because large amounts of fossil fuels are used, the intensity of greenhouse gas emissions per unit of product production is quite high. In order to respond more accurately and quickly to greenhouse gas regulations, including the domestic emissions trading system, it is necessary to establish a system for accurately identifying greenhouse gas emission sources and calculating emissions for each lime manufacturing process. In this study, in order for limestone processing companies to effectively respond to the domestic greenhouse gas emissions trading system, the operation method, input raw materials, and fuel differences for each type of limestone kiln were identified through field surveys, and the greenhouse gas emission intensity was analyzed As a results, it was confirmed that greenhouse gas emissions were reduced when using a Parallel flow regenerative kiln compared to an improved shaft kiln even when the same amount of limestone was used.

석회 산업에서 발생하는 총 온실가스 중 약 75%가 공정배출에서 발생하며, 이는 소성공정에서 석회석의 탈탄산 반응에 의해 배출되는 비율이다. 또 석회석 소성 공정에서 다량의 화석연료를 사용하므로 소성공정에서의 온실가스 배출 원단위는 매우 높다. 향후 국내 배출권거래제를 포함한 온실가스 규제에 보다 정확하고 신속하게 대응하기 위해서는 석회 제조 공정별로 정확한 온실가스 배출원 규명 및 배출량 산정을 위한 체계를 정립할 필요가 있다. 이에 본 연구에서는 석회석 가공 업체들이 국내 온실가스 배출권거래제에 효과적으로 대응하기 위해 석회석 소성로 유형별 운전 방식, 투입원료 및 연료 차이 등을 현장 조사를 통해 파악하고 온실가스 배출량 원단위를 분석하였다. 분석결과, 유체로를 사용하는 경우 토중로 대비 효율이 향상되어 같은 양의 석회석을 사용하더라도 온실가스 배출량이 감소하는 효과를 확인하였다.

Keywords

Acknowledgement

본 연구는 한국광해광업공단 기술연구사업 '국내 석회석 광산 탄소배출량 산정기준 마련 및 저감기술 적용방안 연구(2022-10)'의 일환으로 수행되었습니다.

References

  1. Kim, Y. J., You, O. J., Lee, H. S., et al., 2023 : Yearbook of minerals statics, pp.24-201, 2023 Edition, Daejeon, Republic of Korea.
  2. EuLA, 2022 : CO2 innovation in the lime sector 3.0, 2022 Edition, European Lime Association (EuLA), Brussels, Belgium. pp.6-13.
  3. GIR, 2022 : National Greenhouse Gas Inventory Report of Korea (in Korean), pp.114-117, GIR Report 11-1480906-000001-10, Green House Gas Inventory and Research Center, Cheongju, Republic of Korea.
  4. Kim, H. S., 2011 : Necessity of Refining Domestic Limestone, Resources Recycling, 20(4), pp.3-22. https://doi.org/10.7844/kirr.2011.20.4.003
  5. Kwon, S. J., Seo, J. H., Kim, Y. J., et al., 2022 : Corresponding strategies of the limestone industry according to the national greenhouse gas reduction regulation, Journal of the KSMER, 59(6), pp.707-716. https://doi.org/10.32390/ksmer.2022.59.6.707
  6. Yuli, S., Zhu, L. and Dabo, G., 2015 : CO2 Emissions from China's lime industry, Applied Energy, 166, pp.245-252. https://doi.org/10.1016/j.apenergy.2015.04.091
  7. GIR, 2022 : National Greenhouse Gas Inventory Report of Korea (in Korean), pp.382-427, GIR Report 11-1480906-000002-10, Green House Gas Inventory and Research Center(GIR), Cheongju, Republic of Korea.
  8. Ko, J. M., 2002 : Calcination technology of limestone (in Korean), Proceedings of The Mineralogical Society of Korea Conference, pp.103-117, The Mineralogical Society of Korea, 1 Oct 2002, printed in Daejeon, Republic of Korea.
  9. Kwon, W. T., 2021 : Carbon neutrality and the technology for the application of waste synthetic resin in the cement industry, Korean Recycled Construction Resources Institute, 16(3), pp.45-50.
  10. Min, T. B., Choi, H. K.. Kim, H. C., et al., 2019 : Use of alternative fuels in cement manufacturing, Korean Recycled Construction Resources Institute, 14(1), pp.17-21.
  11. Chatziaras, N., Psomopoulos, C. S., Themelis, N. J., 2014 : Proceedings of the 12th International Conference on Protection and Restoration of the Environment, pp.521-529, Desalination and Water Treatment, 29 Jun 2014, Skiatho Island, Greece.
  12. Bynton, R. S., 1966 : Chemistry and technology of lime and limestone, pp.276-281, 2nd Edition, Wiley & Sons, United State of America.
  13. KRICT, 2020 : White paper on carbon dioxide transition technology (in Korean), pp.31-84, 1, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.
  14. KLIME, 2011 : Limestone (in Korean), 16, 2nd Edition, Korea Limestone Industry Cooperation (KLIME), Seoul, Republic of Korea.
  15. EuLa, 2014 : A Competitive and efficient lime industry cornerstone for a sustainable Europe, pp.27-40, European Lime Association (EuLA), Brussels, Belgium.
  16. Lee, J. W., Kim, M. H., Lee, J. W., et al., 2020 : Development of GHG emission factors for lime production industry processes in Korea, Journal of Climate Change Research, 11(5-2), pp.501-506. https://doi.org/10.15531/KSCCR.2020.11.5.501