DOI QR코드

DOI QR Code

습식공정에 의한 폐리튬이온전지(LIB) 재활용 기술 현황 및 전망

Current Status and Prospect of Waste Lithium Ion Battery(LIB) Recycling Technology by Hydrometallurgical Process

  • 안재우 (대진대학교 신소재공학과) ;
  • 조연철 (대진대학교 신소재공학과)
  • Jae-Woo Ahn (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Yeon-Chul Cho (Department of Advanced Materials Sci. & Eng., Daejin University)
  • 투고 : 2023.07.31
  • 심사 : 2023.08.17
  • 발행 : 2023.08.31

초록

최근 리튬이차전지 산업의 고속 성장과 함께 폐리튬이온전지 발생량이 급증하면서 폐리튬전지 재활용 사업이 주목을 받고 있다. 폐리튬전지 재활용 기술은 코발트, 니켈, 리튬 등 전지 내 함유되어 있는 고가의 유가금속을 재사용할 수 있는 자원순환 효과와 환경오염을 방지할 수 있다는 측면에서 매우 중요하다. 본 연구에서는 폐리튬전지를 전처리한 후에 발생되는 블랙파우더로 부터 습식공정에 의한 Mn, Co, Ni, Li 등을 분리·회수하는 기술에 대해 소개하고자 한다. 특히 분리공정의 핵심이라 할 수 있는 용매추출 기술의 적용 사례를 분석하여 효율적인 공정 설계 방안에 대하여 설명하고, 아울러 향후 주목을 받을 수 있는 친환경 미래 기술의 전망에 대해서도 소개하고자 한다.

Recently, due to the rapid growth of the lithium-ion battery(LIB) industry and the significant increase in waste LIB generation, the LIB recycling business has garnered global attention. The recycling of waste LIBs holds paramount importance as it facilitates resource circulation by reusing precious and valuable metals like Mn, Co, Ni, and Li contained within batteries, thereby preventing environmental pollution. In this study, we aim to introduce a technology that utilizes a hydrometallurgical process to separate and recover Mn, Co, Ni, Li, and other materials from the black mass generated after pretreating waste LIBs. Specifically, we will analyze instances of solvent extraction technology application, which serves as the core technology in the separation process. We will elucidate efficient process design methods and provide an overview of potential future eco-friendly technologies poised to capture attention.

키워드

참고문헌

  1. A. Kraytsberg, Y. Ein-Eli, 2012 : Higher, stronger, better... A review of 5V cathode materials for advanced lithium-ion batteries, Advanced Energy Materials, 2(8), pp.922-939. https://doi.org/10.1002/aenm.201200068
  2. A. K. Awasthi, J. Li, 2017 : An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE, Resour. Conserv. Recycl., 126, pp.228-239. https://doi.org/10.1016/j.resconrec.2017.07.014
  3. J. Neumann, M. Petranikova, M. Meeus, et al., 2022 : Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling, Adv. Energy Mater., 12, 2102917, pp.1-26. https://doi.org/10.1002/aenm.202102917
  4. J. Xiao, J. Li, Z. Xu, 2020 : Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environmental Science and Technology, 54(1), pp.9-25. https://doi.org/10.1021/acs.est.9b03725
  5. K. Yoo, 2023 : Lithium Ion Battery Recycling Industry in South Korea, Resources Recycling, 32(1), pp.13-20.
  6. J. C. Jung, P. Sui, J. Zhang, 2021 : A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments, Journal of Energy Storage, 35, pp.102217.
  7. T. Or, S. W. D Gourley, K. Kaliyappan, et al., 2020 : Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2(1), pp.6-43. https://doi.org/10.1002/cey2.29
  8. P. Meshram, B. D. Pandey, T. R. Mankhand, 2015 : Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp.306-313. https://doi.org/10.1016/j.wasman.2015.05.027
  9. K. Tanong, L. Coudert, G. Mercier, et al., 2016 : Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process, J. Environ. Manage., 181, pp.95-107. https://doi.org/10.1016/j.jenvman.2016.05.084
  10. F. Wang, R. Sun, J. Xu, et al., 2016 : Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction, RSC Adv., 6, pp.85303-85311. https://doi.org/10.1039/C6RA16801A
  11. J. O. Demarco, J. S. Cadore, F. S. Oliveira, et al., 2019 : Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy, 190, pp.105-169. https://doi.org/10.1016/j.hydromet.2019.105169
  12. P. Meshram, A. Mishra, Abhilash, et al., 2020 : Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids-A review, Chemosphere, 242, pp.125291.
  13. R. Golmohammadzadeh, F. Faraji, F. Rashchi, 2018 : Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
  14. B. Musariri, G. Akdogan, C. Dorfling, et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117. https://doi.org/10.1016/j.mineng.2019.03.027
  15. E. Gerold, C. Schinnerl, H. Antrekowitsch, 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(1), pp.4.
  16. R. Golmohammadzadeh, F. Faraji, F. Rashchi, 2018 : Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
  17. L. Li, E. Fan, Y. Guan, et al., 2017 : Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustainable Chem. Eng., 5(6), pp.5224.
  18. X. Liu, K. Huang, H. Xiong, et al., 2023 : Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries, Environ. Technol., 44(2), pp.211-225.
  19. X. Zheng, W. Gao, X. Zhang, et al., 2017 : Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Manag., 60, pp.680-688. https://doi.org/10.1016/j.wasman.2016.12.007
  20. Y. Chen, N. Liu, F. Hu, et al., 2018 : Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 75, pp.469-476. https://doi.org/10.1016/j.wasman.2018.02.024
  21. P. Meshram, Abhilash, B. D. Pandey, et al., 2016 : Comparision of different reductants in leaching of spent lithium ion batteries, JOM, 68(10), pp.2613-2623. https://doi.org/10.1007/s11837-016-2032-9
  22. N. Vieceli, C. A. Nogueira, C. Guimaraes, et al.,, 2018 : Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manage., 71, pp.350-361. https://doi.org/10.1016/j.wasman.2017.09.032
  23. Q. Meng, Y. Zhang, P. Dong, 2017 : Use of glucose as reductant to recover Co from spent lithium ions batteries, Waste Manag., 64, pp.214-218. https://doi.org/10.1016/j.wasman.2017.03.017
  24. X. Xiao, B. W. Hoogendoorn, Y. Ma, et al., 2021 : Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids, Green Chem., 23, pp.8519.
  25. J. Sedlakova-Kadukova, R. Marcincakova, A. Luptakova, et al., 2020 : Comparison of three different bioleaching systems for Li recovery from lepidolite, Sci. Rep., 10, pp.14594.
  26. A. Isildar, E. D. Hullebusch, M. Lenz, et al., 2019 : Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment(WEEE)-A review, J. Hazard. Mater., 362, pp.467-481. https://doi.org/10.1016/j.jhazmat.2018.08.050
  27. J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944.
  28. J. Jegan Roy, M. Srinivasan, B. Cao, 2021 : Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density, ACS Sustainable Chem. Eng., 9, pp.3060.
  29. N. B. Horeh, S. M. Mousavi and S. A. Shojaosadati, 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266. https://doi.org/10.1016/j.jpowsour.2016.04.104
  30. N. Bahaloo-Horeh and S. M. Mousavi, 2017 : Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger, Waste Manag., 60, pp.666-679. https://doi.org/10.1016/j.wasman.2016.10.034
  31. B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.1.
  32. A. Zhu, X. Bian, W. Han, et al., 2023 : The application of deep eutectic solvents in lithium-ion battery recycling: a comprehensive review, Resources, conservation, and recycling, 188, pp.106690.
  33. Y. Fan, Y. Kong, P. Jiang, et al., 2023 : Development and challenges of deep eutectic solvents for cathode recycling of end-of-life lithium-ion batteries, Chemical Engineering Journal, 463(1), pp.142278.
  34. Y. Luo, C. Yin, L. Ou, et al., 2022 : Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents, Green Chemistry, 17, pp.6562-6570. https://doi.org/10.1039/D2GC01431A
  35. S. Virolainen, T. Wesselborg, A. Kaukinen, et al., 2021 : Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange, Hydrometallurgy, 202, pp.105602.
  36. D. Morin, C. Gagnebourque, E. Nadeau, et al., 2019, WO. 2019060996A1.
  37. H. Wang, B. Friedrich, 2015 : Development of a highly efficient hydrometallurgical recycling process for automotive Li-ion batteries, J. Sustain. Metal. 1, pp.168-178. https://doi.org/10.1007/s40831-015-0016-6
  38. B. Davis, K. Watson, A. Roy, et al., 2019 : Li-cycle-a case study in integrated process development, REWAS2019, MMMS, pp.247-260, The Minerals, Metals & Materials Society 2019, Springer Cham.
  39. X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
  40. X. Zhang, L. Li, E. Fan, et al., 2018 : Toward sustainable and systematic recycling of spent rechargeable batteries, Chem. Soc. Rev. 47(19), pp.7239-7302. https://doi.org/10.1039/C8CS00297E
  41. W. Lv, Z. Wang, H. Cao, et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustainable Chem. Eng., 6, pp.1504-1521. https://doi.org/10.1021/acssuschemeng.7b03811
  42. S. Virolainen, M. F. Fini, A. Laitinen, et al., 2017 : Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co, Sep. Purif. Technol., 179, pp.274-282. https://doi.org/10.1016/j.seppur.2017.02.010
  43. S. Lei, W. Sun, Y. Yang, 2022 : Solvent extraction for recycling of spent lithium-ion batteries, Journal of Hazardous Materials, 424, pp.127654.
  44. B. Swain, J. Jeong, J. Lee, et al., 2007 : Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, J. Power Sources, 167(2), pp.536-544. https://doi.org/10.1016/j.jpowsour.2007.02.046
  45. A. K. Jha, M. K. Jha, A. Kumari, et al., 2013 : Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant, Sep. Purif. Technol., 104, pp.160-166. https://doi.org/10.1016/j.seppur.2012.11.024
  46. S. Joo, D. J. Shin, C. H. Oh, et al., 2016 : Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159, pp.65-74. https://doi.org/10.1016/j.hydromet.2015.10.012
  47. K. Y. Wang, B. C. Cheng, W. Y. Shu, 1991 : Solvent extraction chemistry, Central South University of Technology, Hunan.
  48. X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
  49. Y. Yamaguchi, J. Hino, 2009, JP. 2009193778A.
  50. A. B. Botelho Junior, S. Stopic, B. Friedrich, et al., 2021 : Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review, Metals, 11(12), pp.1999.
  51. X. Lin, X. Wang, G. Liu, et al., 2022 : Recycling of Power Lithium-Ion Batteries, Wiley-VCH, Weinheim.
  52. Y. Yang, S. Lei, S. Song, et al., 2020 : Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag., 102, pp.131-138. https://doi.org/10.1016/j.wasman.2019.09.044
  53. W. Chen, H. Ho, 2018 : Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods, Metals 8(5), pp.321.
  54. J. Zhao, X. Y. Shen, F. L. Deng, et al., 2011 : Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Sep. Purif. Technol., 78, pp.345-351. https://doi.org/10.1016/j.seppur.2010.12.024
  55. Y. Yang, S. Xu, Y. He, 2017 : Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag., 64, pp.219-227. https://doi.org/10.1016/j.wasman.2017.03.018
  56. L. Shuya, C. Yang, C. Xuefeng, et al., 2020 : Separation of lithium and transition metals from leachate of spent lithiumion batteries by solvent extraction method with Versatic 10, Separation and Purification Technology, 250, pp.117258.
  57. E. Y. Kim, E. O, Bae, S. K. Jang, 2022, KR. 10-2022-0057136.
  58. T. Liu, J. Chen, X. Shen, et al., 2021 : Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction, Sep. Purif. Technol., 259, pp.118088.
  59. Y. Cho, K. Kim, J. Ahn, 2021 : Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301, Resources Recycling, 30(6), pp.28-35. https://doi.org/10.7844/KIRR.2021.30.6.28
  60. C. H. Jung, S.W. Park, 2021, KR. 10-2324910.
  61. K. H. Kim, 2023 : A Study on the Separation of Valuable Metals in Waste Lithium Secondary Batteries by Preloading Solvent Extraction Method, Master's thesis, Daejin University.
  62. M. C. Olivier, C. Dorfling, J. J. Eksteen, 2012 : Evaluating a solvent extraction process route incorporating nickel preloading of Cyanex 272 for the removal of cobalt and iron from nickel sulphate solutions, Minerals Engineering, 27-28, pp.37-51. https://doi.org/10.1016/j.mineng.2011.12.006
  63. X. Chen, B. Xu, T. Zhou, et al., 2015 : Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries, Separation and Purification Technology, 144, pp.197-205. https://doi.org/10.1016/j.seppur.2015.02.006
  64. X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Management, 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
  65. D. H. Kim, Y. H. Kim, W. J Kim, 2022, KR. 10-2471399.
  66. H. Zou, E. Gratz, D. Apelian, et al., 2013 : A novel method to recycle mixed cathode materials for lithium ion batteries, Green Chem., 15(5), pp.1183-1191. https://doi.org/10.1039/c3gc40182k
  67. Z. Zheng, M. Chen, Q. Wang, et al., 2018 : High Performance Cathode Recovery from Different Electric Vehicle Recycling Streams, ACS Sustain. Chem. Eng., 6(11), pp.13977-13982. https://doi.org/10.1021/acssuschemeng.8b02405
  68. F. Larouche, F. Tedjar, K. Amouzegar, et al., 2020 : Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond, Materials, 13(3), pp.801.
  69. E. Gratz, Q. Sa, D. Apelian, et al., 2014 : A closed loop process for recycling spent lithium ion batteries. J. Power Sources, 262, pp.255-262. https://doi.org/10.1016/j.jpowsour.2014.03.126
  70. M. Chen, Z. Zheng, Q. Wang, et al., 2019 : Closed Loop Recycling of Electric Vehicle Batteries to Enable Ultra-high Quality Cathode Powder, Sci Rep., 9, pp.1654. https://doi.org/10.1038/s41598-018-38238-3
  71. Y. Weng, S. Xu, G. Huang, et al., 2013 : Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries, Journal of Hazardous Materials, 246-247, pp.163-172. https://doi.org/10.1016/j.jhazmat.2012.12.028
  72. J. Fang, Z. Ding, Y. Ling, et al., 2022 : Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent Lithium-ion batteries assisted by sodium sulfate electrolysis, Chemical Engineering Journal, 440, pp.135880.
  73. L. He, S. Sun, J. Yu, 2018 : Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ionbatteries by a carbonate co-precipitation method, Ceramics International, 44(1), pp.351-357. https://doi.org/10.1016/j.ceramint.2017.09.180
  74. Y. Cho, K. Kim, J. Ahn, 2022 : Application of Electromembrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.1-18.  https://doi.org/10.7844/kirr.2022.31.5.3