DOI QR코드

DOI QR Code

Effects of composite and metallic patch on the limit load of pressurized steel pipes elbow with internal defects under opening bending moment

  • Chaaben Arroussi (LPTPM, Departement of Mechanical Engineering, Faculty of Technology, Hassiba BenBouali University of Chlef) ;
  • Azzedine Belalia (LEM, Faculty of Technology, Hassiba Benbouali University of Chlef) ;
  • Mohammed Hadj Meliani (LPTPM, Departement of Mechanical Engineering, Faculty of Technology, Hassiba BenBouali University of Chlef)
  • 투고 : 2023.05.30
  • 심사 : 2023.09.10
  • 발행 : 2023.09.25

초록

Internal and external corrosion are common in pressure pipes used in a variety of industries, often resulting in defects that compromise their integrity. This economically and industrially significant problem calls for both preventive and curative technical solutions to guarantee the reliability of these structures. With this in mind, our study focuses on the influence of composite and metallic patch repairs on the limit loads of pipes, particularly elbows, the critical component of piping systems. To this end, we used the nonlinear extended finite element method (X-FEM) to study elbows, a priori corroded on the internal surface of the extrados section, then repaired with composite and metallic patches. In addition, the effect of the geometry of composite materials and metal patches was examined, in particular the effect of their thickness and material on the increase in limit loads of repaired structures. The results obtained provide information on the effectiveness and optimization of patch repair of corroded elbows, with the aim of increasing their service life.

키워드

참고문헌

  1. Abbasnia, S.K. and Shariati, M. (2023), "Experimental and numerical investigation of ratcheting behavior in seamless carbon steel 90° elbow pipe with small dimensions under constant internal pressure and in-plane cyclic bending", Int. J. Press. Vessels Pip, 204, 104974. https://doi.org/10.1016/j.ijpvp.2023.104974.
  2. Ahmad, H., Ejaz, M.F. and Aslam, M. (2022), "Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection", Struct. Monit. Maint., 9(1), 81-105. https://doi.org/10.12989/smm.2022.9.1.081.
  3. Ahmed-Bensoltane, A., Mokhtari, M., Benzaama, H., Samet, K., Benrouba, H. and Abdelouahed, E (2023), "Using XFEM technique to pPredict the effect of default on the damage of steel pipe Reduced-connection under bending and pressure loading", Int. J. Steel Struct., 23(1), 316-330. https://doi.org/10.1007/s13296-022-00697-w.
  4. Alexander, C. and Ochoa, O. (2010), "Extending onshore pipeline repair to offshore steel risers with carbon-fiber reinforced composites", Compos. Struct., 92(2), 499-507. https://doi.org/10.1016/j.compstruct.2009.08.034
  5. Alexander, C.R. (2009) "Evaluating damaged subsea pipelines using an engineering-based integrity management program", In ASME International Offshore Pipeline Forum, Houston, TX, ASME Paper No. IOPF2009-6002.
  6. Amara, M., Muthanna, B.G.N., Abbes, M.T. and Meliani, M.H. (2018), "Effect of sand particles on the Erosion-corrosion for a different locations of carbon steel pipe elbow,", Procedia Struct. Integr., 13, 2137-2142. https://doi.org/10.1016/j.prostr.2018.12.151.
  7. Arroussi, C., Mouna, A., Meliani, M.H. and Pluvinage, G (2022), "Proposal engineering methods to repair/replace bend elbow pipe contain internal corrosion defect", Procedia Struct. Integr., 41, 752-758. https://doi.org/10.1016/j.prostr.2022.05.087.
  8. ASME (2008), "Repair of pressure equipment and piping," American Society of Mechanical Engineers, New York, Standard No. PCC-2.
  9. Balakrishnan, S., Veerappan, A.R. and Shanmugam, S. (2022), "Development of a new improved closed-form plastic collapse moment solution for structurally distorted and through-wall axially cracked 90° pipe bends subjected to in-plane closing bending moment", Int. J. Press. Vessels Pip., 199, 104736. https://doi.org/10.1016/j.ijpvp.2022.104736.
  10. Benyahia, F., Albedah, A., Bachir Bouiadjra, B. and Belhouari, M. (2015), "A comparison study of bonded composite repairs of through-wall cracks in pipes subjected to traction, bending moment and internal pressure", Adv. Mater. Res., 1105, 41-45. doi:10.4028/www.scientific.net/AMR.1105.41.
  11. Boukortt, H., Amara, M., Meliani, M.H., Bouledroua, O., Muthanna, B.G.N., Suleiman, R.K., Sorour, A.A., Pluvinage, G. (2018), "Hydrogen embrittlement effect on the structural integrity of API 5L X52 steel pipeline", Int. J. Hydrogen. Energ., 43(42), 19615-19624. https://doi.org/10.1016/j.ijhydene.2018.08.149.
  12. Bruere, V.M., Bouchonneau, N., Motta, R.S., Afonso, S.M.B., Willmersdorf, R.B., Lyra, P.R.M., Torres, J.V.S., de Andrade, E.Q. and Cunha, D.J.S. (2019), "Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force Cunha", J. Braz. Soc. Mech. Sci. Eng., 41(172). https://doi.org/10.1007/s40430-019-1674-2.
  13. Cruz, C., Vargas, B., Capula, S., Teran, G., Guzman, I. and Granda, E. (2020), "Experimental and finite element analysis of a damaged API5L X52 pipeline with longitudinal crack repaired by adhesively bonded metallic patch", J. Adhes. Sci. Technol., 35(11), 1170-1184. https://doi.org/10.1080/01694243.2020.1838109.
  14. Da Costa Mattos, H.S., Reis, J.M.L., Paim, L.M., Da Silva, M.L., Junior, R.L. and Perrut, V.A. (2016), "Failure analysis of corroded pipelines reinforced with composite repair systems", Eng. Fail. Anal., 59, 223-236. https://doi.org/10.1016/j.engfailanal.2015.10.007
  15. Duan, Z.X. and Shen, S.M (2006), "Analysis and experiments on the plastic limit pressure of elbows", Int. J. Press. Vessels Pip., 83(10), 707-713. https://doi.org/10.1016/j.ijpvp.2006.08.003.
  16. Duell, J.M., Wilson, J.M. and Kessler, M.R. (2008), "Analysis of a carbon composite overwrap pipeline repair system", Int. J. Press. Vessels Pip., 85(11),782-788. https://doi.org/10.1016/j.ijpvp.2008.08.001.
  17. Firoozabad, E.S., Jeon, B.G., Choi, H.S. and Kim, N.S. (2016), "Failure criterion for steel pipe elbows under cyclic loading", Eng. Fail. Anal., 66, 515-525. https://doi.org/10.1016/j.engfailanal.2016.05.012.
  18. Gadi, I., Meriem-Benziane, M. and Bouiadjra, B.B. (2019), "Finite element method investigation of geometrical influences of adhesive and patch in the safety for 90° elbow piping system", J. Mech. Eng. Sci., 13(4), 5973-5987. https://doi.org/10.15282/jmes.13.4.2019.17.0473.
  19. Goertzen, W.K. and Kessler, M.R. (2007), "Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair", Compos. B. Eng., 38(1), 1-9. https://doi.org/10.1016/j.compositesb.2006.06.002.
  20. Gunaydin, B., Daghan, B. and Avci, A. (2013), "Fatigue behavior of surface-notched composite pipes repaired by composite patches", Int. J. Damage Mech., 22(4), 490-498. http://dx.doi.org/10.1177/1056789512450596.
  21. Hollaway, L. and Cadei, J. (2002), "Progress in the technique of upgrading metallic structures with advanced polymer composites", Prog. Struct. Eng. Mater., 4(2), 131-148. https://doi.org/10.1002/pse.112.
  22. Hosseini-Toudeshky, H. and Fadaei, E. (2012), "Effects of composite patch geometry on collapse load of pressurized steel pipes with internal longitudinal flaws", Appl. Mech. Mater., 152, 381-386. https://doi.org/10.4028/www.scientific.net/AMM.152-154.381
  23. Jing, J., Gao, F., Johnson, J., Liang, F.Z., Williams, R.L. and Qu, J. (2008), "Simulation of dynamic fracture along solder-pad interfaces using a cohesive zone model", Int. Mech. Eng. Congress Expo., 48678, 171-176. https://doi.org/10.1115/IMECE2008-68891.
  24. Kim, J.K., Kim, D.S. and Takeda, N. (1995), "Notched strength and fracture criterion in fabric composite plates containing a circular hole", J. Compos. Mater., 29(7), 982-998. https://doi.org/10.1177/002199839502900706.
  25. Lee, G.H., Pouraria, H., Seo, J.K. and Paik, J.K. (2015), "Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions", Int. J. Nav. Archit., 7(3), 435-451. https://doi.org/10.1515/ijnaoe-2015-0031.
  26. Li, J., Zhou, C.Y., Xue, J.L. and He, X.H. (2014), "Limit loads for pipe bends under combined pressure and out-of-plane bending moment based on finite element analysis", Int. J. Mech. Sci., 88, 100-109. https://doi.org/10.1016/j.ijmecsci.2014.07.012.
  27. Lyapin, A.A., Chebakov, M.I., Dumitrescu, A. and Zecheru, G. (2015), "Finite-element modeling of a damaged pipeline repaired using the wrap of a composite material", Mech. Compos. Mater., 51(3), 1-8. https://doi.org/10.1007/s11029-015-9504-9.
  28. Meriem-Benziane, M., Abdul-Wahab, S.A., Zahloul, H., Babaziane, B., Hadj-Meliani, M. and Pluvinage, G. (2015), "Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single- and double-bonded composites", Compos. B. Eng., 77, 431-439. https://doi.org/10.1016/j.compositesb.2015.03.008.
  29. Meriem-Benziane, M., Bou-Said, B., Muthanna, B.G.N. and Boudissa, I. (2021), "Numerical study of elbow corrosion in the presence of sodium chloride, calcium chloride, naphthenic acids, and sulfur in crude oil", J. Pet. Sci. Eng., 198, 108124. https://doi.org/10.1016/j.petrol.2020.108124.
  30. Moes N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  31. Muthanna, B.G.N., Amara, M., Meliani, M.H., Mettai, B., Bozic, Z., Suleiman, R. and Sorour, A.A. (2019), "Inspection of internal erosion-corrosion of elbow pipe in the desalination station", Eng. Fail. Anal., 102, 293-302. https://doi.org/10.1016/j.engfailanal.2019.04.062.
  32. Muthanna, B.G.N., Bouledroua, O., Meriem-Benziane, M., Hadj-Meliani, M., Pluvinage, G. and Suleiman, R.K. (2019), "Numerical study of semi-elliptical cracks in the critical position of pipe elbow", Frat. ed Integrita Strutt., 13(49), 463-477. https://doi.org/10.3221/IGF-ESIS.49.44.
  33. Muthanna, B.G.N., Bouledroua, O., Meriem-Benziane, M., Setvati, M.R. and Djukic, M.B. (2021), "Assessment of corroded API 5L X52 pipe elbow using a modified failure assessment diagram", Int. J. Press. Vessels Pip., 190, 104291. https://doi.org/10.1016/j.ijpvp.2020.104291.
  34. Peng, H. and Liu, Y. (2019), "Shakedown and limit analysis of 45-degree piping elbows under internal pressure and cyclic in-plane bending", PVP - ASME, 58967, V005T09A003. https://doi.org/10.1115/PVP2019-93263.
  35. Prabhakar, M.M., Rajini, N., Ayrilmis, N., Mayandi, K., Siengchin S., Senthilkumar, K., Karthikeyan, S. and Ismail, S.O. (2019), "An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability", Compos. Struct., 230. https://doi.org/10.1016/j.compstruct.2019.111419.
  36. Robertson, A., Li, H. and Mackenzie, D. (2005), "Plastic collapse of pipe bends under combined internal pressure and in-plane bending", Int. J. Press. Vessels Pip, 82(5), 407-416. https://doi.org/10.1016/j.ijpvp.2004.09.005.
  37. Salem, M., Mechab, B., Berrahou, M., Bachir Bouiadjra, B. and Serier, B. (2019), "Failure analyses of propagation of cracks in repaired pipe under internal pressure", J. Fail. Anal. Prev., 19(1), 212-218. https://doi.org/10.1007/s11668-019-00592-3.
  38. Shalaby, M.A. and Younan, M.Y. (1997), "Limit loads for pipe elbows with internal pressure under in-plane closing bending moments", Am. Soc. Mech. Eng. Press. Vessels Pip. Div. (Publ.) PVP, 347, 203-213. https://doi.org/10.1115/1.2841882.
  39. Subbaiah, A. and Bollineni, R. (2020), "Stress intensity factor of inclined internal edge crack in cylindrical pressure vessel", J. Fail. Anal. Prev., 20, 1524-1533. https://doi.org/10.1007/s11668-020-00948-0.
  40. Tee, K.F. and Wordu, A.H. (2019), "Burst strength analysis of pressurized steel pipelines with corrosion and gouge defects", Eng. Fail. Anal., 108. https://doi.org/10.1016/j.engfailanal. 104347.
  41. Toutanji, H. and Dempsey, S (2001), "Stress modeling of pipelines strengthened with advanced composites materials", Thin-Walled Struct., 39(2), 153-165. https://doi.org/10.1016/S0263-8231(00)00049-5.
  42. Trifonov, O.V. (2015), "Numerical stress-strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects", J. Pipeline Syst. Eng. Pract., https://doi.org/10.1061/(ASCE)PS.1949-1204.0000177.
  43. Xie, M. and Tian, Z. (2018), "A review on pipeline integrity management utilizing in-line inspection data", Eng. Fail. Anal., 92, 222-239. https://doi.org/10.1016/j.engfailanal.2018.05.010
  44. Zhang, T., Zhang, Y.O. and Ouyang, H. (2015), "Structural vibration and fluid-borne noise induced by turbulent flow through a 90 piping elbow with/without a guide vane", Int. J. Press. Vessels Pip., 125, 66-77. https://doi.org/10.1016/j.ijpvp.2014.09.004.
  45. Zhang, Y., Cheng, Z. and Jia, Z. (2022), "Failure loads analysis of corroded pipe repaired by composite material under tension and internal pressure", J. Mar. Eng. Technol., 21(3), 178-188. https://doi.org/10.1080/20464177.2020.1826675.