DOI QR코드

DOI QR Code

Case Study of Deep Geological Disposal Facility Design for High-level Radioactive Waste

스웨덴 고준위방사성폐기물 심층처분시설의 설계 사례 분석

  • Juhyi Yim (R&D center, Hyundai Engineering and Construction) ;
  • Jae Hoon Jung (R&D center, Hyundai Engineering and Construction) ;
  • Seokwon Jeon (Department of Energy Resources Engineering, Seoul National University) ;
  • Ki-Il Song (Department of Civil Engineering, Inha University) ;
  • Young Jin Shin (R&D center, Hyundai Engineering and Construction)
  • 임주휘 (현대건설 기술연구원) ;
  • 정재훈 (현대건설 기술연구원) ;
  • 전석원 (서울대학교 에너지자원공학과) ;
  • 송기일 (인하대학교 사회인프라공학과) ;
  • 신영진 (현대건설 기술연구원)
  • Received : 2023.09.08
  • Accepted : 2023.10.10
  • Published : 2023.10.31

Abstract

The underground disposal facility for spent nuclear fuel demands a specialized design, distinct from conventional practices, to ensure long-term thermal, mechanical, and hydraulic integrity, preventing the release of radioactive isotopes from high-temperature spent nuclear fuel. SKB has established design criteria for such facilities and executed practical design implementations for Forsmark. Moreover, in response to subsurface uncertainty, SKB has proposed an empirical approach involving monitoring and adaptive design modifications, alongside stepwise development. SKB has further introduced a unique support system, categorizing ground types and behaviors and aligning them with corresponding support types to confirm safety through comparative analyses against existing systems. POSIVA has pursued a comparable approach, developing a support system for Onkalo while accounting for distinct geological characteristics compared to Forsmark. This demonstrates the potential for domestic implementation of spent nuclear fuel disposal facility designs and the establishment of a support system adapted to national attributes.

고준위방사성폐기물 심층처분시설은 고온의 사용후핵연료에서 핵종 누출을 막기 위해 열적, 역학적, 수리적 안전성이 장기적으로 확보되도록 일반적인 지하터널과는 다른 특별한 설계가 필요하다. 스웨덴 SKB는 고준위방사성폐기물 처분시설의 설계 기준을 수립하고 포쉬마크 지역에 대해 실제 설계를 수행하였다. 그리고 지반 불확실성에 대응하기 위해 모니터링과 그에 따른 설계 변경이 가능한 관찰 기법과 단계별 개발법을 제안하였다. SKB는 지반 유형과 지반 거동을 분류하고 포쉬마크 지역에 존재하는 지반유형과 거동의 조합에 적절한 지보 유형을 대응시키는 독자적인 지보 시스템을 개발하였고 기존 지보 시스템과 비교를 통해 안전성을 확인하였다. POSIVA는 SKB와 유사한 방식으로 온칼로 지역에 대해 지보시스템을 개발하였으나 포쉬마크와는 상이한 지반 특성을 반영하였다. 이를 참고하여, 국내 고준위방사성폐기물 심층처분시설 건설을 위한 설계가 이루어질 수 있을 것이며 국내 특성에 맞는 지보 시스템 또한 수립될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 사용후 핵연료 관리 핵심기술 개발사업단 및 산업부 한국에너지기술평가원의 지원을 받아 수행된 연구 사업의 일환으로 수행되었습니다(No. 2021040101003C). 이에 감사드립니다.

References

  1. Andersson, C.J., 2007, Rock Mass Response to Coupled Mechanical Thermal Loading Aspo Pillar Stability Experiment, Sweden. Doctoral Thesis. Division of Soil and Rock Mechanics, Royal Institute of Technology, Stockholm, Sweden. ISSN 1650-9501.
  2. Grimstad, E. and Barton, N., 1993, Updating the Q-system for NMT, In Proceedings of the International Symposium on Sprayed Concrete-Modern use of wet mix sprayed concrete for underground support, Fagemes, Oslo, Norwegian Concrete Association.
  3. Hagros, A., 2006, Host Rock Classification (HRC) system for nuclear waste disposal in crystalline bedrock.PhD thesis, Department of Geology, University of Helsinki.
  4. Holmberg, M. and Stille, H., 2007, Observationsmetodens grunder och dess tillampning pa design av konstruktioner i berg, Stiftelsen Svensk Bergteknisk Forskning/Swedish Rock Engineering Research.
  5. Peck, R.B., 1969, Advantages and limitations of the observational method in applied soil mechanics, Geotechnique, 19(2), 171-187. https://doi.org/10.1680/geot.1969.19.2.171
  6. POSIVA, 2013, Site Engineering Report, POSIVA 2012-23.
  7. POSIVA, SKB, 2017, Safety functions, performance targets and technical design requirements for a KBS-3V repository, Conclusions and recommendations from a joint SKB and Posiva working group, Posiva SKB Report, 1.
  8. SKB, 2001, Rock stability considerations for siting and constructing a KBS-3 repository: Based on experiences from Aspo HRL, AECL's URL, tunnelling and mining. TR-01-38.
  9. SKB, 2005, Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites. R-05-71.
  10. SKB, 2006, Using observations in deposition tunnels to avoid intersections with critical fractures in deposition holes, R-06-54.
  11. SKB, 2007a, Construction experiences from underground works at Forsmark, R-07-10.
  12. SKB, 2007b, Final repository facility Underground design premises/D2, R-07-33.
  13. SKB, 2008, Injekteringen av TASS-tunneln. Delresultat t o m september 2008, R-08-123.
  14. SKB, 2009a, Underground Design Forsmark, Layout D2, R-08-116.
  15. SKB, 2009b, Underground Design Forsmark, Layout D2: Rock Mechanics and Rock Support, R-08-115.
  16. SKB, 2009c, Site engineering report Forsmark Guidelines for underground design Step D2, R-08-83.
  17. SKB, 2009d, Strategy for thermal dimensioning of the final repository for spent nuclear fuel, R-09-04.
  18. SKB, 2010a, Design, construction and initial state of the underground openings, TR-10-18.
  19. SKB, 2010b, Full perimeter intersection criteria. Definitions and implementations in SR-Site, TR-10-21.