DOI QR코드

DOI QR Code

Effect of Chelating Agent on Li1.5Al0.5Ti1.5(PO4)3 Particles by Sol-gel Method and Densification

Sol-Gel법에 의한 Li1.5Al0.5Ti1.5(PO4)3 고체전해질 제조 및 chelating agent의 영향

  • SungJoon Ryu (Department of Energy Engineering, Dankook University) ;
  • Seul Ki Choi (Department of Energy Engineering, Dankook University) ;
  • Jong Ho Won (Department of Energy Engineering, Dankook University) ;
  • MinHo Yang (Department of Energy Engineering, Dankook University)
  • 류성준 (단국대학교 에너지공학과) ;
  • 최슬기 (단국대학교 에너지공학과) ;
  • 원종호 (단국대학교 에너지공학과) ;
  • 양민호 (단국대학교 에너지공학과)
  • Received : 2023.08.21
  • Accepted : 2023.10.08
  • Published : 2023.10.28

Abstract

Li1.5Al0.5Ti1.5(PO4)3 (LATP) is considered to be one of the promising solid-state electrolytes owing to its excellent chemical and thermal stability, wide potential range (~5.0 V), and high ionic conductivity (~10-4 S/cm). LATP powders are typically prepared via the sol-gel method by adding and mixing nitrate or alkoxide precursors with chelating agents. Here, the thermal properties, crystallinity, density, particle size, and distribution of LATP powders based on chelating agents (citric acid, acetylacetone, EDTA) are compared to find the optimal conditions for densely sintered LATP with high purity. In addition, the three types of LATP powders are utilized to prepare sintered solid electrolytes and observe the microstructure changes during the sintering process. The pyrolysis onset temperature and crystallization temperature of the powder samples are in the order AC-LATP > CA-LATP > ED-LATP, and the LATP powder utilizing citric acid exhibits the highest purity, as no secondary phase other than LiTi2PO4 phase is observed. LATP with citric acid and acetylacetone has a value close to the theoretical density (2.8 g/cm3) after sintering. In comparison, LATP with EDTA has a low sintered density (2.2 g/cm3) because of the generation of many pores after sintering.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C100653612 and RS-2023-00221237).

References

  1. R. Shah, B. Gashi, S. Gonzalez-Poggini, M. Colet-Lagrille and A. Rosenkranz: Adv. Mech. Eng., 13 (2021) 1687.
  2. G. G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand, S. Passerini, E. Figgemeier: Nat. Commun., 12 (2021) 5459.
  3. M. Fichtner: Batter. Supercaps., 5 (2022) 2566.
  4. J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C.-S. Choi and B. S. Dunn: Adv. Energy Mater., 8 (2018) 1800933.
  5. M. Qin, Z. Zeng, S. Cheng and J. Xie: Interdiscip Mater., 2 (2023) 308.
  6. A. Sohib, J. Karunawan, C. Deliana D. Sundari, O. Floweri and F. Iskandar: J. Phys.: Conf. Ser., 2243 (2022) 012044.
  7. J. Feng, L. Wang, Y. Chen P. Wang, H. Zhang and X. He: Nano Convergence, 8 (2021) 2.
  8. S. Chen, D. Xie, G. Liu, P.-M. Jean, Q. Zhang, Y. Zhao, X. Xu and X. Yao: Energy Stor. Mater., 14 (2018) 58.
  9. K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang and Z. Chen: J. Electrochem. Soc., 164 (2017) 1731.
  10. M. V. Reddy, C. M. Julien, A. Mauger and K. Zaghib, K: Nanomaterials, 10 (2020) 1606.
  11. F. Ichilhara, S. Miyoshi and T. Masuda: Phys. Chem. Chem. Phys., 24 (2022) 25878.
  12. H. Raj, T. Fabre, M. Lachal, A. Neveu, J. Jean, M.-C. Steil, R. Bouchet and V. Pralong: ACS Appl. Energy Mater., 6 (2023) 1197.
  13. R. DeWees and H. Wang: ChemSusChem., 12 (2019) 3713.
  14. C.-J. Park, S.-M. Na, H.-G. Park and K.-J. Park: ACS Appl. Mater. Interfaces., 15 (2023) 26985.
  15. Q. Ma, Q. Xu, C.-L. Tsai, F. Tietz and O. Guillon: J. Am. Ceram. Soc., 99 (2016) 410.
  16. A. Wibowo, R. F. Indrawan, L. A. Tresna Wulan Asri, S. S. Rahardi and B. S. Purwasasmita: Conf. Ser.: Mater. Sci. Eng., 509 (2019) 012021.
  17. R. Wei, S. Chen, T. Gao and W. Liu: Nano Select., 2 (2021) 2256.
  18. K. Sinwinska-Stefanska, J. Zdarta, D. Paukszta and T. Jesionowski: J. Sol-Gel. Technol., 75 (2015) 264.
  19. B. J. Hwang, R. Santhanam and D. G. Liu: J. Power Sources., 97 (2001) 443.
  20. M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi and N. Kamarudin: Nanoscale Res Lett., 9 (2014) 134.
  21. N. Osman, A. A. Samat, A. N Che Mat, N. I. Abd Malek and J. Andas: Ceram. Int., 48 (2022) 2289.
  22. Y.-S. Ho, C.-H. Wu, Y.-S. Chen and C.-K. Liu: Int. J. Appl. Ceram. Technol., 12 (2015) E53.
  23. N. A. Abdullah, N. Osman, S. Hasan and O. H. Hassan: Int. J. Electrochem. Sci., 7 (2012) 9401.
  24. M. R. Ghaani, A. M. Mohtasebi, R. Tajeri and P. Marashi: Batteries., 6 (2020) 48.
  25. D. Chen, Y. Liu, F. Luo, J. Tang and Y. Zhou: J. Mater Sci: Mater. Electron., 31 (2020) 13724
  26. X. Hu, Y. Chen, Z. Hu, Y. Li and Z. Ling: J. Electrochem. Soc., 165 (2018) 1269.
  27. S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.-L. Taberna, P. Simon and F. Ansart: J. Eur. Ceram. Soc., 33 (2013) 1145.
  28. G. Zhang, J. Li and Y. Wu: Ceram. Int., 48 (2022) 25120.
  29. Y. Zhang, H. Wu, B. Jia, D. Zhang, Y. Wang, Z. Zhang, X. Qu and M. Qin: Ceram. Int., 48 (2022) 18165.
  30. P. Liang, Z. Pan, L. Tang, G. Zhang, D. Yang, S. He and H. Yan: Batteries, 15 (2022) 2232.