DOI QR코드

DOI QR Code

Analytical Method for Determination of Laccaic Acids in Foods with HPLC-PDA and Monitoring

식품 중 락카인산 성분 분리정제를 통한 분석법 확립 및 실태조사

  • Jae Wook Shin (Korea Advanced Food Research Institute) ;
  • Hyun Ju Lee (Dept. of Yuhan Biotechnology, Schcool of Bio-Health Sciences, Yuhan University Bucheon) ;
  • Eunjoo Lim (Peakmansp) ;
  • Jung Bok Kim (Dept. of Yuhan Biotechnology, Schcool of Bio-Health Sciences, Yuhan University Bucheon)
  • 신재욱 (한국식품과학연구원 연구사업팀) ;
  • 이현주 (유한대학교 건강생명학부 유한생명바이오학과) ;
  • 임은주 ((주)피크만에스피) ;
  • 김정복 (유한대학교 건강생명학부 유한생명바이오학과)
  • Received : 2023.04.26
  • Accepted : 2023.08.22
  • Published : 2023.10.30

Abstract

Major components of lac coloring include laccaic acids A, B, C, and E. The Korean Food Additive Code regulates the use of lac coloring and prohibits its use in ten types of food products including natural food products. Since no commercial standards are available for laccaic acids A, B, C, and E, a standard for lac pigment itself was used to separate laccaic acids from the lac pigment molecule. A standard for each laccaic acid was then obtained by fractionation. To obtain pure lac pigment for use in food by High performance Liquid Chromatography Photo Diode Array (PDA), a C8 column yielded the best resolution among various tested columns and mobile phases. A qualitative analytical method using High Performance Liquid Chromatography (HPLC) Tandem Mass(LC-MS/MS) was developed. The conditions for fast and precise sample preparation begin with extraction using methanol and 0.3% ammonium phosphate, followed by concentration. The degree of precision observed for the analyses of ham, tomato juice and Red pepper paste was 0.3-13.1% (Relative Standard Deviation (RSD%)), degree of accuracy was 90.3-122.2% with r2=0.999 or above, and recovery rate was 91.6-114.9%. The limit of detection was 0.01-0.15 ㎍/mL, and the limits of quantitation ranged from 0.02 to 0.47 ㎍/mL. Lac pigment was not detected in 117 food products in the 10 food categories for which the use of lac pigment is banned. Multiple laccaic acids were detected in 105 food products in 6 food categories that are allowed to use lac color. Lac pigment concentrations range from 0.08 to 16.67 ㎍/mL.

본 연구에서는 기존 식품첨가물 분석법에서 합으로써 분석되는 락색소를 laccaic acid A, B, C, E 4가지 성분으로 분류하고 개별적으로 정량 할 수 있는 분석법을 확립하였다. Natural red 25를 사용하여 구조적으로 비슷한 laccaic acid A와 B를 1차적으로 분취한 후 2차로 A와 B를 분리했다. 같은 방식으로 C와 D를 1차, 2차에 걸쳐 각각의 개별 표준품으로 사용하였다. 락색소 불검출 시료 3가지 시료(햄, 토마토 주스, 고추장)를 확보하여 0.05-107.2 ㎍/mL 범위에서 결정계수(r2) 0.995 이상의 직선성을 확인하였다. 3가지 시료에서 정밀도와 정확성을 측정한 결과, 일내 정밀도는 0.2-12.3%, 정확도는 90.6-112.7% 범위 내에서 확인되었으며 일간 정밀도는 0.3-13.3%, 정확도는 90.3-113.0% 범위내로 확인 되었다. 락색소를 사용하는 식품과 사용 금지 식품에 대해 회수율을 측정한 결과, 사용 가능 식품에서는 91.6-114.9% 범위의 회수율을 보였으며, 사용 불가 식품의 경우 92.5-113.5% 범위의 회수율을 보였다. 락색소의 검출 한계는 3가지 시료에서 검출한계 0.01-0.15 ㎍/mL, 정량한계 0.02-0.47 ㎍/mL로 확인되었다. 락색소의 4가지 성분중 laccaic acid A와 C에 대한 측정 불확도를 산출한 결과, laccaic acid A의 측정 불확도는 13.65±0.39 mg/kg(신뢰수준 95%, K=2), laccaic acid C의 측정 불확도는 4.19±0.39 mg/kg(신뢰수준 95%, K=2)로 비교적 낮은 측정불확도 값을 산출하였다. 따라서 본 연구에서는 식품 중 락색소의 개별 분석과 정성 및 정량분석을 위해 유효성이 검증된 분석법을 확립으로 식품 중 잔류물질 기준규격 설정 및 관리에 참고 자료가 될 수 있고, 향후 매트릭스 효과에 따른 laccaic acid 개별 분석과 개별 활성 및 독성시험 연구의 근거 지표가 될 수 있다고 판단된다.

Keywords

Acknowledgement

본 연구 결과(논문)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도전문대학육성사업(LINC 3.0)의 연구결과 입니다.

References

  1. Ministry of Food and Drug safety (MFDS), 2021. Food Additives Code. No. 2016-32, Cheongju, Korea, pp. 432-435. 
  2. Ministry of Food and Drug safety (MFDS), 2021. Food Additives Code. No. 2016-32, Cheongju, Korea, pp. 433. 
  3. Hirata, K., Uematsu, Y., Suzuki, K., Lida, K., Yasuda, K., Saito, K., Analysis of main pigments and other ingredients in Lac color product. Shokuhin Eiseigaku Zasshi., 42, 109-113 (2001).  https://doi.org/10.3358/shokueishi.42.109
  4. Rucl Institutional Repository, (2023, August 21). Investigation on Bangladeshi lac dye. Retrieved from http://rulrepository.ru.ac.bd/handle/123456789/995 
  5. Hong, Z., Guigan, F., Hua, Z., Kun, L., Determination of anthraquinone content in lac dye through combined spectrophotometry and HPCE. Procedia Eng., 18, 86-94 (2011).  https://doi.org/10.1016/j.proeng.2011.11.014
  6. Oka, H., Ito, Y., Yamada, S., Kagami, T., Hayakawa, J., Harada, K.I., Atsumi, E., Suzuki, M., Suzuki, M., Odani, H., Akahori, S., Maeda, K., Tanaka, T., Mizuno, M., Identification of lac dye components by electrospray high performance liquid chromatography-tamdem mass spectrometry. J. Mass Spectrom. Soc. Jpn., 46, 63-68 (1998).  https://doi.org/10.5702/massspec.46.63
  7. Oka, H., Lto, Y., Yamada, S., Kagami, T., Hayakawa, J., Harada, K.I., Atsumi, E., Suzuki, M., Suzuki, M., Odani, H., Akahori, S., Maeda, K., Nakazawa, H., Ito, Y., Separation of lac dye components by high-speed counter-current chromatography. J. Chromatogr. A., 813, 71-77 (1998).  https://doi.org/10.1016/S0021-9673(98)00311-2
  8. Wouters, J., Verhecken, A., The coccid insect dyes : HPLC and computerized diode-array analysis of dyed yarns. Stud. Conserv., 34, 189-200 (1989).  https://doi.org/10.1179/sic.1989.34.4.189
  9. Santos, R., Hallett, J., Oliveira, M.C., Sousa, M.M., Sarraguca, J., Simmonds, M.S.J., HPLC-DAD-MS analysis of colorant and resinous components of lac-dye: A comparison between Kerria and Paratachardina genera. Dyes Pigm., 118, 129-136 (2015).  https://doi.org/10.1016/j.dyepig.2015.02.024
  10. Rafaelly, L., Heron, S., Nowik, W., Tchapla, A., Optimisation of ESI-MS detection for the HPLC of anthraquinone dyes. Dyes Pigm., 77, 191-203 (2008).  https://doi.org/10.1016/j.dyepig.2007.05.007
  11. Szostek, B., Orska-Gawrys, J., Surowiec, I., Trojanowicz, M., Investigation of natural dyes occuring in historical Coptic textiles by high-performance liquid chromatography with UV-Vis and mass spectrometric detection. J. Chromatogr. A., 1012, 179-192 (2003).  https://doi.org/10.1016/S0021-9673(03)01170-1
  12. Novotna, P., Pacakova, V., Bosakova, Z., Stulik, K., High-performance liquid chromatographic determination of some anthraquinone and naphthoquinone dyes occurring in historical textiles. J. Chromatogr. A., 863, 235-241 (1999).  https://doi.org/10.1016/S0021-9673(99)00980-2
  13. Dube, D.K., Loch-Caruso, R., Trosko, J.E., Chakravarty, I., Ghosh, A., Loeb, L.A., Assessment of the carcinogenic potential of a proposed food coloring additive, laccaic acid, using short-term assays. Cell Biol. Toxicol., 1, 111-125 (1984).  https://doi.org/10.1007/BF00125569
  14. Ministry of Food and Drug Safety (MFDS), 2021, A Study on the Safety Evaluation of Natural Pigments (Lak Pigments), Cheongju, Korea. 
  15. Chiba, Y., Yamaguchi, Y., Hiramto, K., Yangi, S., Saito, Y., Hamana, T., Studies on qualitative analysis of natural food colors in foods. Annual report of Miyagi Prefectural Institute of Public Health and Environment., 28, 50-54 (2010). 
  16. Oka, H., Ito, Y., Yamada, S., Kagami, T., Hayakawa, J., Harada, K.I., Atsumi, E., Suzuki, M., Suzuki, M., Odani, H., Akahori, S., Maeda, K., Tanaka, T., Mizuno, M., Identification of lac dye components by electrospray high performance liquid chromatography-Tandem Mass spectrometry. J.Mass Spectrum. Soc. Jpn., 46, 63-68 (1998).  https://doi.org/10.5702/massspec.46.63
  17. Nishizawa, M., China, T., Hori, Y., Studies on the Analysis of natural dyes (part 3) analysis of cochineal dye and lac dye in foods and dye preparations. Doe Kensho-bo., 35, 7-11 (1985).