DOI QR코드

DOI QR Code

Development of a Simultaneous Analytical Method for Azocyclotin, Cyhexatin, and Fenbutatin Oxide Detection in Livestock Products using the LC-MS/MS

LC-MS/MS를 이용한 축산물 중 유기주석계 농약 Azocyclotin, Cyhexatin 및 Fenbutatin oxide의 동시시험법 개발

  • Nam Young Kim (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Eun-Ji Park (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • So-Ra Park (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Jung Mi Lee (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Yong Hyun Jung (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Hae Jung Yoon (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety)
  • 김남영 (식품의약품안전처 식품의약품안전평가원 잔류물질과) ;
  • 박은지 (식품의약품안전처 식품의약품안전평가원 잔류물질과) ;
  • 박소라 (식품의약품안전처 식품의약품안전평가원 잔류물질과) ;
  • 이정미 (식품의약품안전처 식품의약품안전평가원 잔류물질과) ;
  • 정용현 (식품의약품안전처 식품의약품안전평가원 잔류물질과) ;
  • 윤혜정 (식품의약품안전처 식품의약품안전평가원 잔류물질과)
  • Received : 2023.05.04
  • Accepted : 2023.10.14
  • Published : 2023.10.30

Abstract

Organotin pesticide is used as an acaricide in agriculture and may contaminate livestock products. This study aims to develop a rapid and straightforward analytical method for detecting organotin pesticides, specifically azocyclotin, cyhexatin, and fenbutatin oxide, in various livestock products, including beef, pork, chicken, egg, and milk, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction process involved the use of 1% acetic acid in a mixture of acetonitrile and ethyl acetate (1:1). This was followed by the addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium chloride. The extracts were subsequently purified using octadecyl (C18) and primary secondary amine (PSA), after which the supernatant was evaporated. Organotin pesticide recovery ranged from 75.7 to 115.3%, with a coefficient of variation (CV) below 25.3%. The results meet the criteria range of the Codex guidelines (CODEX CAC/GL 40). The analytical method in this study will be invaluable for the analysis of organotin pesticides in livestock products.

축산물 중 잔류허용기준이 설정되어 관리하고 있는 농약 azocyclotin, cyhexatin, fenbutatin oxide는 대표적인 유기주석계 살비제이다. 기존 시험법은 가스크로마토그래피를 사용하여 정량한계가 높고 분석 시 재현성이 떨어져 이에 대한 개선이 필요한 실정으로 본 연구에서는 비교적 간편하며 시간이 적게 소요되는 QuEChERS법을 활용하여 azocyclotin, cyhexatin, fenbutatin oxide의 시험법을 마련하고자 하였다. 1% 아세트산을 함유한 아세트산에틸:아세토니트릴(1:1) 혼합액을 이용하여 진탕 추출 후 d-SPE로 정제하고 이를 농축 후 LC-MS/MS를 이용한 시험법을 개발하였다. Azocyclotin, cyhexatin 및 fenbutatin oxide의 결정계수(R2)는 0.99 이상으로 높은 직선성을 확인하였으며 정량한계는 0.01 mg/kg으로 높은 감도를 나타내었다. 대표 축산물 5종(소, 돼지, 닭, 계란, 우유)에서 LOQ(0.01 mg/kg), MRL(0.05 mg/kg), MRL 10배(0.5 mg/kg)의 농도에서 회수율 실험을 한 결과 평균 회수율이 76.4-115.3% 및 84.4-110.8%이었으며, 상대표준편차는 25.3% 이하로 나타났다. 본 연구는 Codex 가이드라인(CAC/GL 40-1993, 2003) 및 '식품의약품안전처 식품의약품안전평가원의 식품등 시험법 마련 표준절차에 관한 가이드라인(2016)'에 적합한 수준임을 확인하였다. 따라서 본 연구에서 확립한 시험법은 축산물 중 잔류할 수 있는 azocyclotin, cyhexatin, fenbutatin oxide의 안전관리를 위한 공정시험법으로 활용 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 식품의약품안전처의 지원(20161농축산604, 2020)을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Korean Statistical Information Servic (KOSIS), (2023, June 5). Annual grain consumption per person. Retrieved from https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ED0001&checkFlag=N 
  2. Korea Meat Trade Association (KMTA), (2023, June 5). Meat consumption per person. Retrieved from http://www.kmta.or.kr/kr/data/stats_spend.php 
  3. Ledoux, M., Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. J. Chromatogr. A., 1218, 1021-1036 (2011).  https://doi.org/10.1016/j.chroma.2010.12.097
  4. Ko, A.Y., Kim, H.J., Do, J.A., Jang, J., Lee, E.H., Ju, Y.J., Kim, J.Y., Chang, M.I., Rhee, G.S., Development of analytical method for determination of spinetoram residues in livestock using LC-MS/MS. Anal. Sci. Technol., 29, 94-103 (2016).  https://doi.org/10.5806/AST.2016.29.2.94
  5. Ministry of Food and Drug Safety (MFDS), (2023, March 21). Korean food code. Retrieved from https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC 
  6. Campillo, N., Vinas, P., Peanalver, R., Cacho, J.I., Hernandez-Cordoba, M., Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples: a comparison of atomic emission and mass spectrometry detectors. J. Food Compos. Anal., 25, 66-73 (2012).  https://doi.org/10.1016/j.jfca.2011.08.001
  7. Rural Development Administration (RDA), (2023, March 22). Pesticide safety information system from https://psis.rda.go.kr/psis/cont/contentMain.ps?menuId=PS00313 
  8. Pubchem, (2023, March 21). Vapor pressure. Retrieved from https://pubchem.ncbi.nlm.nih.gov/ 
  9. Benchchem, (2023, March 21). Vapor pressure. Retrieved from https://www.benchchem.com/product/b141819 
  10. Korean Law Information Center, (2023, March 21). Registration criteria of pesticide and technical product. Retrieved from https://www.law.go.kr/admRulSc.do?menuId=5&subMenuId=41&tabMenuId=183&query=%EB%86%8D%EC%95%BD%20%EB%B0%8F%20%EC%9B%90%EC%A0%9C%EC%9D%98%20%EB%93%B1%EB%A1%9D%EA%B8%B0%EC%A4%80#liBgcolor0 
  11. European Commission, (2023, March 22). EU Pesticide database-MRLs. Retrieved from https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls 
  12. The Japan Food Chemical Research Foundation, (2023. March 22). MRLs list of agricultural chemicals in foods. Retrieved from, https://db.ffcr.or.jp/front/ 
  13. Food and Agricultural Organization (FAO), (2023. March 22). Pesticide index, https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ 
  14. Qian, B., He, Y., Zhao, J., Peng, L.X., Han, B.J., Simultaneous determination of five organotins in tropical fruits using modified QuEChERS combined with ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. Sci., 59, 269-279 (2021).  https://doi.org/10.1093/chromsci/bmaa103
  15. Ma, Y.N., Gui, W.J., Zhu, G.N., The analysis of azocyclotin and cyhexatin residues in fruits using ultrahigh-performance liquid chromatography-tandem mass spectrometry. Anal. Methods., 7, 2108-2113 (2015).  https://doi.org/10.1039/C4AY02624A
  16. Seong, R.S., Kang, I.H., Mun, C.S., Lee, J.J., Kim, J.E., Lee, Y.D., Lee, J.R., Im, M.H., Lee, J.H., Yang, J.H., 2013. Development of improved analytical method of residual pesticides in oriental herbal medicines, MFDS, Cheongju, Korea, pp. 40-55. 
  17. Ministry of Food and Drug Safety (MFDS), 2017, Analytical manual for pesticide residues in foods, 5th, MFDS, Cheongju, Korea, pp. 180. 
  18. Ma, Y.N., Chen, M.X., Mou, R.X., Cao, Z.Y., Simultaneous determination of three organotin pesticides in fruits and vegetables by high-performance liquid chromatography/tandem mass spectrometry. Rap. Commun. Mass. Spectr., 33, 867-874 (2019).  https://doi.org/10.1002/rcm.8409
  19. AB SCIEX, (2023, October 4). Quantitation and identification of organotin compounds in food, water, and textiles using LCMS/MS. Retrieved from https://sciex.com/content/dam/SCIEX/pdf/brochures/Organotin_pesticides_QTRAP4k_6690212.pdf 
  20. Codex Alimentarius Commission (CAC), Guidelines on good laboratory practice in residue analysis, CAC/GL 40-1993. CAC, Rome, Italy (2003). 
  21. National institute of food and drug safety evaluation (NIFDS), Guidelines on standard procedures for preparing analysis method, NIFDS, Cheongju, Korea (2016). 
  22. Taylor, M.J., Melton, L.M., Sharp, E.A., Watson, J.E., A liquid chromatography-electrospray tandem mass spectrometry method for the determination of multiple pesticide residues involved in suspected poisoning of non-target vertebrate wildlife, livestock and pets. Anal. Methods., 5, 248-259 (2013).  https://doi.org/10.1039/C2AY25555C
  23. Mol, H.G., Rooseboom, A., van Dam, R., Roding, M., Arondeus, K., Sunarto, S., Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce. Anal. Bioanal. Chem., 389, 1715-1754 (2007).  https://doi.org/10.1007/s00216-007-1357-1
  24. Anastassiades, M., Lehotay, S.J., Stajnbaher, D., Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "Dispersive solid-phase extraction" for the determination of pesticide residues in produce. J. AOAC Int., 86, 412-431 (2003).  https://doi.org/10.1093/jaoac/86.2.412
  25. British Standard (BS), Food of plant origin-determination of pesticide residues using GCMS and/or LC-MS(/MS) following acetonitrile extraction/partitioning and clean up by dispersive SPE-QuEChERS method, BS EN 15662:2008 (E), BS, London, UK (2008). 
  26. Lehotay, S.J., Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. J. AOAC Int., 90, 485-520 (2007). https://doi.org/10.1093/jaoac/90.2.485