DOI QR코드

DOI QR Code

Microbial Hazards and Microbe Reduction Technologies for Mushrooms

버섯의 미생물 위해성 및 저감화 처리기술 개발 현황

  • Hyunji Song (Department of Food and Nutrition, Chung-Ang University) ;
  • Areum Han (Department of Food and Nutrition, Chung-Ang University) ;
  • Boyang Meng (Department of Food and Nutrition, Chung-Ang University) ;
  • A-Ra Jang (Department of Food and Nutrition, Chung-Ang University) ;
  • Ji-Yeon Kim (Department of Food and Nutrition, Chung-Ang University) ;
  • Sun-Young Lee (Department of Food and Nutrition, Chung-Ang University)
  • 송현지 (중앙대학교 생명공학대학 식품영양학과) ;
  • 한아름 (중앙대학교 생명공학대학 식품영양학과) ;
  • 맹경호 (중앙대학교 생명공학대학 식품영양학과) ;
  • 장아라 (중앙대학교 생명공학대학 식품영양학과) ;
  • 김지연 (중앙대학교 생명공학대학 식품영양학과) ;
  • 이선영 (중앙대학교 생명공학대학 식품영양학과)
  • Received : 2023.06.08
  • Accepted : 2023.09.18
  • Published : 2023.10.30

Abstract

Mushroom consumption is gradually growing annually worldwide for many centuries. Oyster mushrooms (Pleurotus ostreatus), button mushrooms (Agaricus bisporus), and enokitake (Flammulina filiformis) are mainly consumed in Korea. However, mushrooms can be contaminated with pathogenic microorganisms, such as Listeria monocytogenes, because antibacterial treatment during mushroom cultivation and processing is insufficient. Therefore, many cases of mushroom contamination-related foodborne illnesses and food recalls have been reported. Three representative treatments are used to prevent microbial contamination in mushrooms: chemical, physical, and combination treatments. Among the chemical treatments, chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds are commercially used and ozone and electrolyzed water has recently been used. Additionally, physical treatments, including ultrasound, irradiation, and cold plasma, are being developed. Combination techniques include ultraviolet/chlorine compounds, ozone/organic acid, and ultrasound/organic acid. This review describes the domestically consumed mushroom types and their characteristics, and investigates the mushroom contamination levels. Additionally, effective antibacterial technologies for reducing microbial contamination in mushrooms are also discussed.

세계적으로 버섯에 대한 소비는 매년 증가하고 있으며 한국에서는 느타리버섯, 양송이버섯, 팽이버섯이 주로 유통되고 있다. 하지만, 버섯의 재배와 가공 과정에서 미생물 오염을 예방하기 위한 대안의 부재로 인하여 Listeria monocytogenes와 같은 병원성 미생물의 오염이 검출되고 있으며 버섯에 의한 식중독 및 리콜 사례가 다수 보고되고 있다. 버섯에서 오염된 미생물을 저감화하는 방법으로는 화학적 및 물리적 처리, 또는 이들을 결합하여 사용하는 병용처리 방법이 이용되고 있다. 화학적 처리로는 염소 혼합물, 과산화아세트산, 4차 암모늄이온 화합물이 주로 사용되고 있으며 오존과 전해수를 이용한 방법도 최근에 개발되었다. 물리적 처리로는 초음파, 방사선조사, 콜드 플라즈마 기술이 이용되고 있으며, 병용처리 방법으로는 자외선/염소 혼합물, 오존/유기산, 초음파/유기산 등이 연구되었다. 본 리뷰에서는 국내에서 소비되는 버섯의 종류와 그에 대한 미생물 오염도를 조사하고, 버섯에 오염된 미생물을 제어할 수 있는 기술에 대하여 조사하여, 정리하였다.

Keywords

Acknowledgement

본 연구는 2022년도 식품의약품안전처 연구개발비(22192MFDS 024)로 수행되었으며, 이에 감사드립니다.

References

  1. Chang, R., Functional properties of edible mushrooms. Nutr. Rev., 54, s91-93 (1996). https://doi.org/10.1111/j.1753-4887.1996.tb03825.x
  2. Mattila, P., Konko, K., Eurola, M., Pihlava, J.M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M., Piironen, V., Contents of Vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem., 49, 2343-2348 (2001). https://doi.org/10.1021/jf001525d
  3. Sia, G.M., Candlish, J.K., Effects of shiitake (Lentinus edodes) extract on human neutrophils and the U937 monocytic cell line. Phytother. Res., 13, 133-137 (1999). https://doi.org/10.1002/(SICI)1099-1573(199903)13:2<133::AID-PTR398>3.0.CO;2-O
  4. Manohar, V., Talpur, N.A., Echard, B.W., Lieberman, S., Preuss, H.G., Effects of a water-soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice. Diabetes Obes. Metab., 4, 43-48 (2002). https://doi.org/10.1046/j.1463-1326.2002.00180.x
  5. Kabir, Y., Yamagichi, M., Kimura, S., Effect of Shiitake (Lentinus edodes) and maitake (Grjfola frondosa) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol., 33, 341-346 (1987). https://doi.org/10.3177/jnsv.33.341
  6. Cheng, H.H., Hou, W.C., Lu, M.L., Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis berk edible mushroom in rats fed a high-cholesterol diet with or without nebacitin. J. Agric. Food Chem., 50, 7438-7443 (2002). https://doi.org/10.1021/jf020648q
  7. Chen, M., Cheng, J., Wu, Q., Zhang, J., Chen, Y., Zeng, H., Ding, Y., Prevalence, potential virulence, and genetic diversity of Listeria monocytogenes isolates from edible mushrooms in Chinese markets. Front Microbiol., 9, 1711 (2018).
  8. Korea Agro-Fisheries & Food Traded Corporation, (2023, September 6). Production status. Retrieved from ttps://www.kati.net/product/basisInfo.do?lcdCode=MD162
  9. Yoon, J.H., Jeong, D.Y., Lee, S.B., Choi, S., Jeong, M.I., Lee, S.Y., Kim, S.R., Decontamination of Listeria monocytogenes in king oyster mushrooms (Pleurotus eryngii) by combined treatments with organic acids, nisin, and ultrasound. LWT., 144, 111207 (2021).
  10. Kues, U., Liu, Y., Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol., 54, 141-152 (2000). https://doi.org/10.1007/s002530000396
  11. Churklam, W., Chaturongakul, S., Ngamwongsatit, B., Aunpad, R., The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control., 108, 106864 (2020).
  12. FDA, (2022, December 2). Outbreak investigation of Listeria monocytogenes: enoki mushrooms. Retrieved from https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-listeria-monocytogenes-enoki-mushrooms-march-2020
  13. CDC, (2023, February 15). Listeria outbreaks, Retrieved from: https://www.cdc.gov/listeria/outbreaks/
  14. CDC, (2023, September 6). Outbreak of Salmonella Stanley infections linked to wood ear mushrooms. Retrieved from https://www.cdc.gov/salmonella/stanley-09-20/
  15. Ren, L., Perera, C., Hemar, Y., Antitumor activity of mushroom polysaccharides: a review. Food Funct., 3, 1118-1130 (2012). https://doi.org/10.1039/c2fo10279j
  16. Ryoo, R., Production status of forest mushrooms. J. Food Process. Preserv., 21, 10-15 (2022).
  17. Kalac, P., Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem., 113, 9-16 (2009). https://doi.org/10.1016/j.foodchem.2008.07.077
  18. Zhang, X., Zhong, Y., Yang, S., Zhang, W., Xu, M., Ma, A., Zhuang, G., Chen, G., Liu, W., Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresour. Technol., 170, 183-195 (2014). https://doi.org/10.1016/j.biortech.2014.07.093
  19. Cai, W.M., Yao, H.Y., Feng, W.L., Jin, Q.L., Liu, Y.Y., Li, N.Y., Zheng, Z., Microbial community structure of casing soil during mushroom growth. Pedosphere., 19, 446-452 (2009). https://doi.org/10.1016/S1002-0160(09)60137-5
  20. Mcgee, C.F., Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl. Microbiol. Biotechnol., 102, 1075-1083 (2018). https://doi.org/10.1007/s00253-017-8683-9
  21. Kertesz, M.A., Thai, M., Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl. Microbiol. Biotechnol., 102, 1639-1650 (2018). https://doi.org/10.1007/s00253-018-8777-z
  22. Ryoo, R., Forest mushroom material status. J. Food Process. Preserv., 20, 3-8 (2021).
  23. NBC News, (2023, September 6). Prepackaged mushrooms recalled for E. coli. Retrieved from https://www.nbcnews.com/health/health-news/prepackaged-mushrooms-recalled-e-coliflna1c9469929
  24. Canadian Food Inspection Agency (CFIA), (2023, September 6). Notification - Jongilpoom brand Enoki mushrooms recalled due to Listeria monocytogenes. Retrieved from https://inspection.canada.ca/food-recall-warnings-and-allergy-alerts/2019-07-05 r13072/eng/1563312477630/1563312479417
  25. Canadian Food Inspection Agency (CFIA), (2023, September 6). Food Recall Warning - Golden Mushroom brand Enoki Mushroom recalled due to Listeria monocytogenes. Retrieved from https://inspection.canada.ca/food-recallwarnings-and-allergy-alerts/2020-03-24/eng/1585081415872/1585081416327
  26. RASFF, (2023, September 6). Notification. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/search
  27. Chen, M., Wu, Q., Zhang, J., Guo, W., Wu, S., Yang, X., Prevalence and contamination patterns of Listeria monocytogenes in Flammulina velutipes plants. Foodborne Pathog. Dis., 11, 620-627 (2014). https://doi.org/10.1089/fpd.2013.1727
  28. Murugesan, L., Kucerova, Z., Knabel, S.J., LaBorde, L.F., Predominance and distribution of a persistent Listeria monocytogenes clone in a commercial fresh mushroom processing environment. J. Food Prot., 78, 1988-1998 (2015). https://doi.org/10.4315/0362-028X.JFP-15-195
  29. Weil, J.D., Cutter, C.N., Beelman, R.B., LaBorde, L.F., Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate. J. Food. Prot., 76, 1393-1400 (2013). https://doi.org/10.4315/0362-028X.JFP-12-508
  30. Lake, F.B., Van Overbeek, L.S., Baars, J.J.P., Koomen, J., Abee, T., Den Besten, H.M.W., Genomic characteristics of Listeria monocytogenes isolated during mushroom (Agaricus bisporus) production and processing. Int. J. Food Microbiol., 360, 109438 (2021).
  31. Xu, J., Wu, S., Liu, M., Xiao, Z., Peng, Y., He, H., Prevalence and contamination patterns of Listeria monocytogenes in Pleurotus eryngii (king oyster mushroom) production plants. Front. Microbiol., 14, 1064575 (2023).
  32. Pennone, V., Dygico, K.L., Coffey, A., Gahan, C.G.M., Grogan, H., McAuliffe, O., Burgess, C.M., Jordan, K., Effectiveness of current hygiene practices on minimization of Listeria monocytogenes in different mushroom production-related environments. Food Sci. Nutr., 8, 3456-3468 (2020). https://doi.org/10.1002/fsn3.1629
  33. Simon, A., Gonzalez Fandos, E., Tobar, V., The sensory and microbiological quality of fresh sliced mushroom (Agaricus bisporus) packaged in modified atmospheres. Int. J. Food Sci. Technol., 40, 943-952 (2005). https://doi.org/10.1111/j.1365-2621.2005.01028.x
  34. Samadpour, M., Barbour, M.W., Nguyen, T., Cao, T.M., Buck, F., Depavia, G.A., Mazengia, E., Yang, P., Alfi, D., Lopes, M., Stopforth, J.D., Incidence of enterohemorrhagic Escherichia coli, Escherichia coli O157, Salmonella, and Listeria monocytogenes in retail fresh ground beef, sprouts, and mushrooms. J. Food Prot., 69, 441-443 (2006). https://doi.org/10.4315/0362-028X-69.2.441
  35. Brennan, M., Le Port, G., Gormley, R., Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. LWT, 33, 285-289 (2000). https://doi.org/10.1006/fstl.2000.0657
  36. Kim, C., Nartea, T.J., Pao, S., Li, H., Jordan, K.L., Xu, Y., Stein, R.A., Sismour, E.N., Evaluation of microbial loads on dried and fresh shiitake mushrooms (Lentinula edodes) as obtained from internet and local retail markets, respectively. Food Saf. (Tokyo), 4, 45-51 (2016).
  37. Venturini, M.E., Reyes, J.E., Rivera, C.S., Oria, R., Blanco, D., Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiol., 28, 1492-1498 (2011). https://doi.org/10.1016/j.fm.2011.08.007
  38. Jiang, H., Miraglia, D., Ranucci, D., Donnini, D., Roila, R., Branciari, R., Li, C., High microbial loads found in minimally-processed sliced mushrooms from Italian market. Ital. J. Food Saf., 7, 7000 (2018).
  39. Mendoza, I.C., Luna, E.O., Pozo, M.D., Vasquez, M.V., Montoya, D.C., Moran, G.C., Romero, L.G., Yepez, X., Salazar, R., Romero-Pena, M., Leon, J.C., Conventional and nonconventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT., 165, 113714 (2022).
  40. Alegbeleye, O.O., Singleton, I., Sant'Ana, A.S., Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol., 73, 177-208 (2018). https://doi.org/10.1016/j.fm.2018.01.003
  41. Gil, M.I., Selma, M.V., Suslow, T., Jacxsens, L., Uyttendaele, M., Allende, A., Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food. Sci. Nutr., 55, 453-468 (2015). https://doi.org/10.1080/10408398.2012.657808
  42. Francis, G.A., Gallone, A., Nychas, G.J., Sofos, J.N., Colelli, G., Amodio, M.L., Spano, G., Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food. Sci. Nutr., 52, 595-610 (2012). https://doi.org/10.1080/10408398.2010.503685
  43. Lake, F.B., Van Overbeek, L.S., Baars, J.J., Abee, T., Den Besten, H.M.W., Variability in growth and biofilm formation of Listeria monocytogenes in Agaricus bisporus mushroom products. Food Res. Int., 165, 112488 (2023).
  44. Fay, M.L., Salazar, J.K., George, J., Chavda, N.J., Lingared-dygari, P., Patil, G.R., Juneja, V.K., Ingram, D.T., Modeling the fate of Listeria monocytogenes and Salmonella enterica on fresh whole and chopped wood ear and enoki mushrooms. J. Food Prot., 86, 100075 (2023).
  45. Gray, M.J., Wholey, W.Y., Jakob, U., Bacterial responses to reactive chlorine species. Annu. Rev. Microbiol., 67, 141-160 (2013). https://doi.org/10.1146/annurev-micro-102912-142520
  46. Artes, F., Gomez, P., Aguayo, E., Escalona, V., Artes Hernandez, F., Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol., 51, 287-296 (2009). https://doi.org/10.1016/j.postharvbio.2008.10.003
  47. Ryther, R., Stokes, R., Development of a comprehensive cleaning and sanitizing program for food production facilities. J. Food Saf., 31, 679-698 (2023).
  48. Lee, W.N., Huang, C.H., Formation of disinfection byproducts in wash water and lettuce by washing with sodium hypochlorite and peracetic acid sanitizers. Food Chem., 1, 100003 (2019).
  49. Singh, P., Hung, Y.C., Qi, H., Efficacy of peracetic acid in inactivating foodborne pathogens on fresh produce surface. J. Food Sci., 83, 432-439 (2018). https://doi.org/10.1111/1750-3841.14028
  50. Brilhante Sao Jose, J.F., Dantas Vanetti, M.C., Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control., 24, 95-99 (2012). https://doi.org/10.1016/j.foodcont.2011.09.008
  51. Zhang, C., Cui, F., Zeng, G.M., Jiang, M., Yang, Z.Z., Yu, Z.G., Zhu, M.Y., Shen, L.Q., Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci. Total Environ., 518-519, 352-362 (2015). https://doi.org/10.1016/j.scitotenv.2015.03.007
  52. Akata, I., Torlak, E., Erci, F., Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom. Postharvest Biol. Technol., 109, 40-44 (2015). https://doi.org/10.1016/j.postharvbio.2015.06.008
  53. Ding, T., Rahman, S.M.E., Oh, D.H., Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control., 22, 318-322 (2011).
  54. Dygico, L.K., Gahan, C.G.M., Grogan, H., Burgess, C.M., Examining the efficacy of mushroom industry biocides on Listeria monocytogenes biofilm. J. Appl. Microbiol., 130, 1106-1116 (2021). https://doi.org/10.1111/jam.14681
  55. Hua, Z., Younce, F., Tang, J., Ryu, D., Rasco, B., Hanrahan, I., Zhu, M.J., Efficacy of saturated steam against Listeria innocua biofilm on common food-contact surfaces. Food Control., 125, 107988 (2021).
  56. Roberts, P.B., Food irradiation is safe: Half a century of studies. Radiat. Phys. Chem., 105, 78-82 (2014). https://doi.org/10.1016/j.radphyschem.2014.05.016
  57. Bhilwadikar, T., Pounraj, S., Manivannan, S., Rastogi, N.K., Negi, P.S., Decontamination of microorganisms and pesticides from fresh fruits and vegetables: A comprehensive review from common household processes to modern techniques. CRFSFS., 18, 1003-1038 (2019).
  58. Bilek, S.E., Turantas, F., Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. Int. J. Food. Microbiol., 166, 155-162 (2013). https://doi.org/10.1016/j.ijfoodmicro.2013.06.028
  59. Guan, W., Fan, X., Yan, R., Effects of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms. Postharvest Biol. Technol., 64, 119-125 (2012). https://doi.org/10.1016/j.postharvbio.2011.05.017
  60. Ha, J.H., Jeong, S.H., Ha, S.D., Synergistic effects of combined disinfecting treatments using sanitizers and UV to reduce levels of Bacillus cereus in oyster mushroom. J. Korean Soc. Appl. Biol. Chem., 54, 269-274 (2011).
  61. Yuk, H.G., Yoo, M.Y., Yoon, J.W., Marshall, D.L., Oh, D.H., Effect of combined ozone and organic acid treatment for control of Escherichia coli O157:H7 and Listeria monocytogenes on enoki mushroom. Food Control., 18, 548-553 (2007). https://doi.org/10.1016/j.foodcont.2006.01.004
  62. Yoon, J.H., Jeong, D.Y., Lee, S.B., Kim, S.R., Control of Listeria monocytogenes and Escherichia coli O157:H7 in enoki mushrooms (Flammulina velutipes) by combined treatments with organic acids, nisin, and ultrasound. Food Control., 129, 108204 (2021).
  63. Yoon, J.H., Chu, H., Jeong, D.Y., Choi, S., Hwang, I.J., Lee, S.Y., Kim, S.R., Decontamination of Listeria monocytogenes in enoki mushrooms using a 405-nm light-emitting diode illumination combined with organic acid dipping. LWT., 133, 110048 (2020).
  64. Ha, J.H., Jeong, S.H., Ha, S.D., Synergistic effects of combined disinfection using sanitizers and UV to reduce the levels of Staphylococcus aureus in oyster mushrooms. J. Korean Soc. Appl. Biol. Chem., 54, 447-453 (2011). https://doi.org/10.3839/jksabc.2011.069