Acknowledgement
이 연구는 2023년 식품의약품안전처 지원 과제(21153MFDS605)에 의해 수행됐으며, 이에 감사드립니다.
References
- Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 169, 5429-5433 (1987). https://doi.org/10.1128/jb.169.12.5429-5433.1987
- Jansen, R., Embden, J.D.V., Gaastra, W., Schouls, L.M., Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 43, 1565-1575 (2002). https://doi.org/10.1046/j.1365-2958.2002.02839.x
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., Charpentier, E., A programmable dual-RNA-guided DNA Endonuclease in adaptive bacterial immunity. Science, 337, 816-821 (2012). https://doi.org/10.1126/science.1225829
- Mojica, F.J., Diez-Villasenor, C.S., Garcia-Martinez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 60, 174-182 (2005). https://doi.org/10.1007/s00239-004-0046-3
- Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712 (2007). https://doi.org/10.1126/science.1138140
- Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., Kaplan, M., Iavarone, A.T., Charpentier, E., Nogales, E., Doudna, J.A., Structures of Cas9 Endonucleases reveal RNA-mediated conformational activation. Science, 343, 1247997 (2014).
- Lou, J., Wang, B., Li, J., Ni, P., Jin, Y., Chen, S., Xi, Y., Zhang, R., Duan, G., The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol. Biol. Rep., 49, 11301-11311 (2022). https://doi.org/10.1007/s11033-022-07752-z
- Lee, S., Kim, Y.Y., Ahn, H.J., Systemic delivery of CRISPR/Cas9 to hepatic tumors for cancer treatment using altered tropism of lentiviral vector. Biomaterials, 272, 120793 (2021).
- Qiao, Z., Fu, Y., Lei, C., Li, Y., Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. Food Control, 112, 107116 (2020).
- Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C., An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv., 28, 232-254 (2010). https://doi.org/10.1016/j.biotechadv.2009.12.004
- Sassolas, A., Leca-Bouvier, B.D., Blum, L.J., DNA Biosensors and Microarrays. Chem. Rev., 108, 109-139 (2008). https://doi.org/10.1021/cr0684467
- Wolcott, M.J., Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev., 5, 370-386 (1992). https://doi.org/10.1128/CMR.5.4.370
- Scheler, O., Glynn, B., Kurg, A., Nucleic acid detection technologies and marker molecules in bacterial diagnostics. Expert Rev. Mol. Diagn., 14, 489-500 (2014). https://doi.org/10.1586/14737159.2014.908710
- Zhao, Y., Chen, F., Li, Q., Wang, L., Fan, C., Isothermal amplification of nucleic acids. Chem. Rev., 115, 12491-12545 (2015). https://doi.org/10.1021/acs.chemrev.5b00428
- Chakraborty, J., Chaudhary, A.A., Khan, S.U.D., Rudayni, H.A., Rahaman, S.M., Sarkar, H., CRISPR/Cas-based biosensor as a new age detection method for pathogenic bacteria. ACS omega, 7, 39562-39573 (2022). https://doi.org/10.1021/acsomega.2c04513
- Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A.H., Moineau, S., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71 (2010). https://doi.org/10.1038/nature09523
- Hille, F., Charpentier, E., CRISPR-Cas: biology, mechanisms and relevance. Philos. Trans. R. Soc. B: Biol. Sci., 371, 20150496 (2016).
- McGinn, J., Marraffini, L.A., Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat. Rev. Microbiol., 17, 7-12 (2019). https://doi.org/10.1038/s41579-018-0071-7
- Ishino, Y., Krupovic, M., Forterre, P., History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 200, 10-1128 (2018).
- Carte, J., Wang, R., Li, H., Terns, R. M., Terns, M.P., Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev., 22, 3489-3496 (2008). https://doi.org/10.1101/gad.1742908
- East-Seletsky, A., O'Connell, M.R., Burstein, D., Knott, G.J., Doudna, J.A., RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell, 66, 373-383 (2017). https://doi.org/10.1016/j.molcel.2017.04.008
- Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., Van Der Oost, J., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960-964 (2008). https://doi.org/10.1126/science.1159689
- Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M., Siksnys, V., Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol., 16, 1-13 (2015). https://doi.org/10.1186/s13059-014-0572-2
- Liu, T.Y., Doudna, J.A., Chemistry of class 1 CRISPR-Cas effectors: binding, editing, and regulation. J. Biol. Chem., 295, 14473-14487 (2020). https://doi.org/10.1074/jbc.REV120.007034
- Murugan, K., Babu, K., Sundaresan, R., Rajan, R., Sashital, D.G., The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell, 68, 15-25 (2017). https://doi.org/10.1016/j.molcel.2017.09.007
- Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., Van der Oost, J., Diverse evolutionary roots and mechanistic variations of theCRISPR-Cas systems. Science, 353, aad5147 (2016).
- Koonin, E.V., Makarova, K.S., Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. B: Biol. Sci., 374, 20180087 (2019).
- Hidalgo-Cantabrana, C., Barrangou, R., Characterization and applications of type I CRISPR-Cas systems. Biochem. Soc. Trans., 48, 15-23 (2020). https://doi.org/10.1042/BST20190119
- Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Scott, D., Shah, S.A., Siksnys, V., Terns, M.P., Venclovas, C, White, M.F., Yakunin, A.F., Yan, W., Zhang, F., Garrett, R.A., Backofen, R., Van der oost, J., Barrangou, R., Koonin, E. V., Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol., 18, 67-83 (2020). https://doi.org/10.1038/s41579-019-0299-x
- Wang, M., Zhang, R., Li, J., CRISPR/Cas systems redefine nucleic acid detection: principles and methods. Biosens. Bioelectron., 165, 112430 (2020).
- Li, Y., Li, S., Wang, J., Liu, G., CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol., 37, 730-743 (2019). https://doi.org/10.1016/j.tibtech.2018.12.005
- Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., Liu, Y., Liu, Y., Hussain, M., Makafe, G.G., Liu, J., Xu, N., Zeng, L., An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens. Bioelectron., 159, 112143 (2020).
- Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., Zhang, F., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360, 439-444 (2018). https://doi.org/10.1126/science.aaq0179
- Kellner, M.J., Koob, J.G., Gootenberg, J.S., Abudayyeh, O.O., Zhang, F., SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc., 14, 2986-3012 (2019). https://doi.org/10.1038/s41596-019-0210-2
- Thompson, F.L., Iida, T., Swings, J., Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev., 68, 403-431 (2004). https://doi.org/10.1128/MMBR.68.3.403-431.2004
- Donovan, T.J., Van Netten, P., Culture media for the isolation and enumeration of pathogenic Vibrio species in foods and environmental samples. Int. J. Food Microbiol., 26, 77-91 (1995). https://doi.org/10.1016/0168-1605(95)00015-C
- Parte, A.C., Carbasse, J.S., Meier-Kolthoff, J.P., Reimer, L.C., Goker, M., List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol., 70, 5607-5612 (2020). https://doi.org/10.1099/ijsem.0.004332
- Baker-Austin, C., Oliver, J.D., Alam, M., Ali, A., Waldor, M.K., Qadri, F., Martinez-Urtaza, J., Vibrio spp. Infections. Nat. Rev. Dis. Primers., 4, 1-19 (2018).
- Wu, H., Chen, Y., Yang, Q., Peng, C., Wang, X., Zhang, M., Qian, S., Xu, J., Wu, J., A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemolyticus. Biosens. Bioelectron., 188, 113352 (2021).
- Chen, X., Wang, L., He, F., Chen, G., Bai, L., He, K., Zhang, F., Xu, X., Label-free colorimetric method for detection of Vibrio parahaemolyticus by trimming the G-quadruplex DNAzyme with CRISPR/Cas12a. Anal. Chem., 93, 14300-14306 (2021). https://doi.org/10.1021/acs.analchem.1c03468
- Zhang, M., Liu, C., Shi, Y., Wu, J., Wu, J., Chen, H., Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application. Talanta, 214, 120818 (2020).
- Rahman, H.S., Mahmoud, B.M., Othman, H.H., Amin, K., A review of history, definition, classification, source, transmission, and pathogenesis of salmonella: a model for human infection. JZS-A., 20, 11-19 (2018). https://doi.org/10.17656/jzs.10730
- Ohl, M.E., Miller, S.I., Salmonella: a model for bacterial pathogenesis. Annu. Rev. Med., 52, 259-274 (2001). https://doi.org/10.1146/annurev.med.52.1.259
- Wu, S., Yuan, J., Xu, A., Wang, L., Li, Y., Lin, J., Yue, X., Xi, X., A lab-on-a-tube biosensor combining recombinase-aided amplification and CRISRP-Cas12a with rotated magnetic extraction for Salmonella detection. Micromachines, 14, 830 (2023).
- Evanko, D., Hybridization chain reaction. Nat. Methods, 1, 186 (2004).
- Wang, J., Wang, D.X., Ma, J.Y., Wang, Y.X., Kong, D.M., Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction. Chem. Sci., 10, 9758-9767 (2019). https://doi.org/10.1039/C9SC02281C
- Cai, Q., Shi, H., Sun, M., Ma, N., Wang, R., Yang, W., Qiao, Z., Sensitive detection of Salmonella based on CRISPR-Cas12a and the tetrahedral DNA nanostructure-mediated hyperbranched hybridization chain reaction. J. Agric. Food Chem., 70, 16382-16389 (2022). https://doi.org/10.1021/acs.jafc.2c05831
- Kohler, C.D., Dobrindt, U., What defines extraintestinal pathogenic Escherichia coli?. Int. J. Med. Microbiol., 301, 642-647 (2011). https://doi.org/10.1016/j.ijmm.2011.09.006
- Kaper, J.B., Nataro, J.P., Mobley, H.L., Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2, 123-140 (2004). https://doi.org/10.1038/nrmicro818
- Rani, A., Ravindran, V.B., Surapaneni, A., Mantri, N., Ball, A.S., Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol., 349, 109233 (2021).
- Zhu, L., Liang, Z., Xu, Y., Chen, Z., Wang, J., Zhou, L., Ultrasensitive and rapid visual detection of Escherichia coli O157:H7 based on RAA-CRISPR/Cas12a system. Biosensors, 13, 659 (2023).
- Bertrand, R., Roig, B., Evaluation of enrichment-free PCR-based detection on the rfbE gene of Escherichia coli O157-Application to municipal wastewater. Water Res., 41, 1280-1286 (2007). https://doi.org/10.1016/j.watres.2006.11.027
- Bahadir, E.B., Sezginturk, M.K., Lateral flow assays: Principles, designs and labels. TrAC, Trends Anal. Chem., 82, 286-306 (2016). https://doi.org/10.1016/j.trac.2016.06.006
- Melton-Celsa, A.R., Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectr., 2, 2-4 (2014).
- Lee, S.Y., Oh, S.W., Filteration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7. Talanta, 241, 123186 (2022).
- Wehr, M.H., Listeria monocytogenes-a current dilemma. JAOAC., 70, 769-772 (1987).
- Cossart, P., Toledo-Arana, A., Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect., 10, 1041-1050 (2008). https://doi.org/10.1016/j.micinf.2008.07.043
- Li, F., Ye, Q., Chen, M., Zhou, B., Zhang, J., Pang, R., Xue, L., Wang, J., Zeng, H., Wu, S., Zhang, Y., Ding, Y., Wu, Q., An ultrasensitive CIRSPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosens. Bioelectron., 179, 113073 (2021).
- Xiao, Y., Ren, H., Wang, H., Zou, D., Liu, Y., Li, H., Hu, P., Li, Y., Liu, Z., Lu, S., A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas system. Talanta, 259, 124558 (2023).
- Bonini, A., Poma, N., Vivaldi, F., Kirchhain, A., Salvo, P., Bottai, D., Tavanti, A., Di Francesco, F., Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acid. J. Pharm. Biomed. Anal., 192, 113645 (2021).