References
- F. Faraji Daneshgar and M. Abbaspour, "On the resilience of P2P botnet footprints in the presence of legitimate P2P traffic," International Journal of Communication Systems, vol. 32, no. 13, article no. e3973, 2019. https://doi.org/10.1002/dac.3973
- A. K. Bhandage and A. Barragan, "Calling in the cavalry: toxoplasma gondii hijacks GABAergic signaling and voltage-dependent calcium channel signaling for Trojan horse-mediated dissemination," Frontiers in Cellular and Infection Microbiology, vol. 9, article no. 61, 2019. https://doi.org/10.3389/fcimb.2019.00061
- A. Amouri, V. T. Alaparthy, and S. D. Morgera, "A machine learning based intrusion detection system for mobile Internet of Things," Sensors, vol. 20, no. 2, article no. 461, 2020. https://doi.org/10.3390/s20020461
- D. Li, L. Deng, M. Lee, and H. Wang, "IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning," International Journal of Information Management, vol. 49, pp. 533-545, 2019. https://doi.org/10.1016/j.ijinfomgt.2019.04.006
- C. L. Ferre, J. B. Carmel, V. H. Flamand, A. M. Gordon, and K. M. Friel, "Anatomical and functional characterization in children with unilateral cerebral palsy: an atlas-based analysis," Neurorehabilitation and Neural Repair, vol. 34, no. 2, pp. 148-158, 2020. https://doi.org/10.1177/1545968319899916
- C. Qi, H. B. Ly, Q. Chen, T. T. Le, V. M. Le, and B. T. Pham, "Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach," Chemosphere, vol. 244, article no. 125450, 2020. https://doi.org/10.1016/j.chemosphere.2019.125450
- B. Yan and G. Han, "Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system," IEEE Access, vol. 6, pp. 41238-41248, 2018. https://doi.org/10.1109/ACCESS.2018.2858277
- A. Javaid, Q. Niyaz, W. Sun, and M. Alam, "A deep learning approach for network intrusion detection system," in Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT), New York, NY, 2016, pp. 21-26. https://doi.org/10.4108/eai.3-12-2015.2262516
- B. A. Pratomo, P. Burnap, and G. Theodorakopoulos, "Unsupervised approach for detecting low rate attacks on network traffic with autoencoder," in Proceedings of 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Glasgow, UK, 2018, pp. 1-8. https://doi.org/10.1109/CyberSecPODS.2018.8560678
- S. Hajiheidari, K. Wakil, M. Badri, and N. J. Navimipour, "Intrusion detection systems in the Internet of Things: a comprehensive investigation," Computer Networks, vol. 160, pp. 165-191, 2019. https://doi.org/10.1016/j.comnet.2019.05.014
- J. Granjal, J. M. Silva, and N. Lourenco, "Intrusion detection and prevention in CoAP wireless sensor networks using anomaly detection," Sensors, vol. 18, no. 8, article no. 2445, 2018. https://doi.org/10.3390/ s18082445
- Y. Lv, S. Peng, Y. Yuan, C. Wang, P. Yin, J. Liu, and C. Wang, "A classifier using online bagging ensemble method for big data stream learning," Tsinghua Science and Technology, vol. 24, no. 4, pp. 379-388, 2019. https://doi.org/10.26599/TST.2018.9010119
- O. Faker and E. Dogdu, "Intrusion detection using big data and deep learning techniques," in Proceedings of the 2019 ACM Southeast Conference, Kennesaw, GA, 2019, pp. 86-93. https://doi.org/10.1145/3299815.3314439
- W. Zong, Y. W. Chow, and W. Susilo, "Interactive three-dimensional visualization of network intrusion detection data for machine learning," Future Generation Computer Systems, vol. 102, pp. 292-306, 2020. https://doi.org/10.1016/j.future.2019.07.045
- A. A. Diro and N. Chilamkurti, "Distributed attack detection scheme using deep learning approach for Internet of Things," Future Generation Computer Systems, vol. 82, pp. 761-768, 2018. https://doi.org/10.1016/j.future.2017.08.043
- A. I. Saleh, F. M. Talaat, and L. M. Labib, "A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and optimized SVM classifiers," Artificial Intelligence Review, vol. 51, pp. 403-443, 2019. https://doi.org/10.1007/s10462-017-9567-1
- G. Karatas, O. Demir, and O. K. Sahingoz, "Deep learning in intrusion detection systems," in Proceedings of 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 2018, pp. 113-116. https://doi.org/10.1109/IBIGDELFT.2018.8625278
- F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, "A novel two-stage deep learning model for efficient network intrusion detection," IEEE Access, vol. 7, pp. 30373-30385, 2019. https://doi.org/10.1109/ACCESS.2019.2899721
- P. Devan and N. Khare, "An efficient XGBoost-DNN-based classification model for network intrusion detection system," Neural Computing and Applications, vol. 32, pp. 12499-12514, 2020. https://doi.org/10.1007/s00521-020-04708-x
- J. Chen and Y. Miao, "Study on network security intrusion target detection method in big data environment," International Journal of Internet Protocol Technology, vol. 14, no. 4, pp. 240-247, 2021. https://doi.org/10.1504/IJIPT.2021.118966
- K. Vieira, F. L. Koch, J. B. M. Sobral, C. B. Westphall, and J. L. de Souza Leao, "Autonomic intrusion detection and response using big data," IEEE Systems Journal, vol. 14, no. 2, pp. 1984-1991, 2020. https://doi.org/10.1109/JSYST.2019.2945555
- H. Liu, Y. Zhang, J. Bi, and M. Xing, "Review of technology based on distributed and collaborative network intrusion detection," Computer Engineering and Application, vol. 54, no. 8, pp. 1-6, 2018.
- E. Viegas, A. O. Santin, and V. Abreu, "Machine learning intrusion detection in big data era: a multi-objective approach for longer model lifespans," IEEE Transactions on Network Science and Engineering, vol. 8, no. 1, pp. 366-376, 2021. https://doi.org/10.1109/TNSE.2020.3038618
- L. Wang and R. Jones, "Big data analytics in cyber security: network traffic and attacks," Journal of Computer Information Systems, vol. 61, no. 5, pp. 410-417, 2021. https://doi.org/10.1080/08874417.2019.1688731
- S. Dasgupta and B. Saha, "HMA-ID mechanism: a hybrid mayfly optimisation based apriori approach for intrusion detection in big data application," Telecommunication Systems, vol. 80, no. 1, pp. 77-89, 2022. https://doi.org/10.1007/s11235-022-00882-6
- M. Kalinin and V. Krundyshev, "Security intrusion detection using quantum machine learning techniques," Journal of Computer Virology and Hacking Techniques, vol. 19, pp. 125-136, 2023. https://doi.org/10.1007/s11416-022-00435-0
- Y. Fu, Y. Du, Z. Cao, Q. Li, and W. Xiang, "A deep learning model for network intrusion detection with imbalanced data," Electronics, vol. 11, no. 6, article no. 898, 2022. https://doi.org/10.3390/electronics11060898
- H. Albasheer, M. Md Siraj, A. Mubarakali, O. Elsier Tayfour, S. Salih, M. Hamdan, S. Khan, A. Zainal, and S. Kamarudeen, "Cyber-attack prediction based on network intrusion detection systems for alert correlation techniques: a survey," Sensors, vol. 22, no. 4, article no. 1494, 2022. https://doi.org/10.3390/s22041494
- H. Alavizadeh, H. Alavizadeh, and J. Jang-Jaccard, "Deep Q-learning based reinforcement learning approach for network intrusion detection," Computers, vol. 11, no. 3, article no. 41, 2022. https://doi.org/10.3390/ computers11030041
- B. Cao, C. Li, Y. Song, Y. Qin, and C. Chen, "Network intrusion detection model based on CNN and GRU," Applied Sciences, vol. 12, no. 9, article no. 4184, 2022. https://doi.org/10.3390/app12094184