DOI QR코드

DOI QR Code

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization

막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막

  • Min-Kyu Shin (Department of Green Chemical Engineering, Sangmyung University) ;
  • Hyeon-Bee Song (Department of Green Chemical Engineering, Sangmyung University) ;
  • Moon-Sung Kang (Department of Green Chemical Engineering, Sangmyung University)
  • 신민규 (상명대학교 그린화학공학과) ;
  • 송현비 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2023.10.11
  • Accepted : 2023.10.18
  • Published : 2023.10.31

Abstract

Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

막 축전식 탈염 공정(membrane capacitive deionization, MCDI)은 이온교환막을 다공성 전극과 함께 사용하여 탈염 효율을 향상시킬 수 있는 CDI 공정의 변형이다. 이온교환막은 MCDI의 성능에 큰 영향을 미치는 핵심 구성요소이다. 본 연구에서는 MCDI의 탈염 효율을 크게 향상시킬 수 있는 이온교환막의 최적 제조 인자를 도출하고자 하였다. 이를 위해 PE 다공성 필름의 세공에 단량체를 충진하고 in-situ 광중합을 진행하여 세공충진 이온교환막(pore-filled ion-exchange membranes, PFIEMs)을 제조하였다. 실험 결과, 제조된 PFIEMs은 다양한 탈염 및 에너지 변환 공정에 적용할 수 있는 수준의 우수한 전기화학적 특성을 나타내었다. 또한, MCDI 성능과 막 특성 인자와의 상관성 분석을 통해 막의 가교도를 제어하여 막의 전기적 저항이 충분히 낮은 범위에서 이온 선택 투과성을 최대화하는 것이 MCDI의 성능 향상을 위해 가장 바람직한 막제조 조건이라는 결론을 얻었다.

Keywords

Acknowledgement

본 연구는 2023년도 정부(산업통상자원부)의 재원으로 산업기술평가관리원의 지원(No. 20010491), KIER 주요사업의 지원(No. C2-2473), 그리고 환경부 및 한국환경산업기술원의 2023년도 녹색융합 전문인력양성 지원사업을 통해 수행되었음.

References

  1. M. M. Mekonnen and A. Y. Hoekstra, "Four billion people facing severe water scarcity", Sci. Adv., 2, e1500323 (2016). 
  2. R. Zhao, S. Porada, P. M. Biesheuvel, and A. van der Wal, "Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis", Desalination, 330, 35 (2013). 
  3. R. Rautenbach and K. VoBenkaul, "Pressure driven membrane processes-the answer to the need of a growing world populationfor quality water supply and waste water disposal." Sep. Purif. Technol., 22, 193 (2001). 
  4. T. Xu and C. Huang, "Electrodialysis-basedseparation technologies: A critical review". AICHE J., 54, 3147 (2008). 
  5. S. Jamaly, N. Darwish, I. Ahmed, and S. Hasan, "A short review on reverse osmosis pretreatment technologies", Desalination., 354, 30 (2014). 
  6. Y. Ghalavand, M. S. Hatamipour, and A. Rahimi, "A review on energy consumption of desalination processes", Desalination Water Treat., 54, 1526 (2015). 
  7. J. Choi, Pema Dorji, H. K. Shon, and S. K. Hong, "Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency". Desalination, 449, 118 (2019). 
  8. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, and P. Biesheuvel, "Review on the science and technology of waterdesalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). 
  9. Yu. M. Volfkovich, "Capacitive deionization of water (A review)", Russ. J. Electrochem., 56, 18 (2020). 
  10. P. M. Biesheuvel and A. Van Der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). 
  11. R. McNair, G. Szekely, and R. A. W. Dryfe, "Ion-exchange materials for membrane capacitive deionization", ACS ES&T Water., 2, 217 (2021). 
  12. H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam, Netherlands (2004). 
  13. D.-H. Kim and M.-S. Kang, "Pore-filled ion-exchange membranes with optimal cross-linking degrees for efficient membrane capacitive deionization", Macromol. Res., 28, 1268 (2020).
  14. G. Tian, L. Liu, Q. Meng, and B. Cao, "Preparation and characterization of cross-linked quaternised polyvinyl alcohol membrane/activated carbon composite electrode for membrane capacitive deionization", Desalination., 354, 107 (2014). 
  15. K. S. Jeong, W. C. Hwang, and T. S. Hwang, "Synthesis of an aminated poly(vinylidene fluride-g-4-vinyl benzyl chloride) anion exchange membrane for membrane capacitive deionization (MCDI)", J. Membr. Sci., 495, 316 (2015). 
  16. J. Chang, K. Tang, H. Cao, Z. Zhao, C. Su, Y. Li, F. Duan, and Y. Sheng, "Application of anion exchange membrane and the effect of its properties on asymmetric membrane capacitive deionization", Sep. Purif. Technol., 207, 387 (2018). 
  17. T. Yamaguchi, H. Zhou, S. Nakazawa, and N. Hara, "An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells", Adv. Mater., 19. 592 (2007). 
  18. N. S. Kwak, J. S. Koo, T. S. Hwang, and E. M. Choi, "Synthesis and electrical properties of NaSS-MAA-MMA cation exchange memꠓbranes for membrane capacitive deionization (MCDI)", Desalination., 285, 138 (2012). 
  19. J. S. Koo, N. S Kwak, and T. S. Hwang, "Synthesis and properties of nonfluoro aminated poly(vinylbenzyl chloride-co-ethyl methacrylate-costyrene) anion exchange membranes for MCDI process", Polymer., 36, 564 (2012). 
  20. Y. Zhang, L. Zou, Y. Wimalasiri, J. Y. Lee, and Y. Chun, "Reduced graphene oxide/polyaniline conductive anion exchange membranes in capacitive deionisation process", Electrochim. Acta., 182, 383 (2015). 
  21. V. M. Palakkal, J. E. Rubio, Y. J. Lin, and C. G. Arges, "Low resistant ion-exchange membranes for energyefficient membrane capacitive deionization", ACS Sustain, Chem., 6, 13788 (2018). 
  22. Y. Zhang, P. Srimuk, M, Aslan, M. Gallei and V. Presser. "Polymer ion-exchange membranes for capacitive deionization of aqueous media with low and high salt concentration", Desalination., 479, 114331 (2020).
  23. X. Zhang and D. Reible "Exploring the function of ion-exchange membrane in membrane capacitive deionization via a fully coupled two-dimensional process model", Desalination., 417, 87 (2017). 
  24. H.-N. Moon, H.-B. Song, and M.-S. Kang, "Thin reinforced ion-exchange membranes containing flourine moiety for all-vanadium redox flow battery", Membranes., 11, 867 (2021). 
  25. H.-B Song. J.-H Park. J.-S Park, and M.-S Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies., 14, 4433 (2021). 
  26. D.-H. Kim and M.-S. Kang, "Pore-filled anion-exchange membranes with double cross-linking structure for fuel cells and redox flow battery", Energies, 13, 4761 (2020). 
  27. K. Jeong, N. Yoon, S. Park, M. Son, J. Lee, and J. Park, "Optimization of a nanofiltration and membrane capacitive deionization (NF-MCDI) hybrid system: Experimental and modeling studies", Desalination., 493, 114658 (2020). 
  28. D-H. Kim, Y-E. Choi, J-S. Park, and M-S. Kang, "Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations", Electrochim. Acta., 295, 164 (2019). 
  29. S. Lee, H. Lee, T.-H. Yang, B. Bae, N. A. T. Tran, Y. Cho, N. Jung, and D. Shin "Quaternary ammonium-bearing perfluorinated polymers for anion exchange membrane applications", Membranes., 10, 306 (2020). 
  30. S. Ghosh, K. Dhole, M. K. Tripathy, R. Kumar, and R. S. Sharma, "FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins", J. Radioanal. Nucl. Chem., 304, 917 (2015). 
  31. Y. A. Y. A. Mohammed, F. Ma, L. Liu, C. Zhang, H. Dong, Q. Wang, X. Xu, and A. A. Al-Wahbi, "Preparation of electrospun polyvinylidene fluoride/amidoximized polyacrylonitrile nanofibers for trace metal ions removal from contaminated water", J. Porous Mater., 28, 383 (2021). 
  32. T. J. Zimudzi and M. A. Hickner "Signal enhanced FTIR analysis of alignment in NAFION thin films at SiO2 and Au interfaces", ACS Macro Lett., 5, 83 (2015). 
  33. Q. Qiu, J.-H. Cha, Y.-W. Choi, J.-H. Choi, J.-H. Shin, and Y.-S. Lee, "Preparation of polyethylene membranes filled with crosslinked sulfonated polystyrene for cation exchange and transport in membrane capacitive deionization process", Desalination, 417, 87 (2017).