DOI QR코드

DOI QR Code

Characterisation of changes in global genes expression in the lung of ICR mice in response to the inflammation and fibrosis induced by polystyrene nanoplastics inhalation

  • You Jeong Jin (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University) ;
  • Ji Eun Kim (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University) ;
  • Yu Jeong Roh (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University) ;
  • Hee Jin Song (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University) ;
  • Ayun Seol (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University) ;
  • Jumin Park (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University) ;
  • Yong Lim (Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University) ;
  • Sungbaek Seo (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University) ;
  • Dae Youn Hwang (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University)
  • Received : 2022.12.22
  • Accepted : 2023.04.26
  • Published : 2023.10.15

Abstract

This study characterised the changes in global gene expression in the lung of ICR mice in response to the inflammation and fibrosis induced by the inhalation of 0.5 ㎛ polystyrene (PS)-nanoplastics (NPs) at various concentrations (4, 8, and 16 ㎍/mL) for 2 weeks. The total RNA extracted from the lung tissue of NPs-inhaled mice was hybridised into oligonucleotide microarrays. Significant upregulation was detected in several inflammatory responses, including the number of immune cells in bronchoalveolar lavage fluid (BALF), the expression level of inflammatory cytokines, mucin secretion, and histopathological changes, while they accumulated average of 13.38±1.0 ㎍/g in the lungs of the inhaled ICR mice. Similar responses were observed regarding the levels of fibrosis-related factors in the NPs-inhaled lung of ICR mice, such as pulmonary parenchymal area, expression of pro-fibrotic marker genes, and TGF-β1 downstream signalling without any significant hepatotoxicity and nephrotoxicity. In microarray analyses, 60 genes were upregulated, and 55 genes were downregulated in the lung of ICR mice during inflammation and fibrosis induced by NPs inhalation compared to the Vehicle-inhaled mice. Among these genes, many were categorised into several ontology categories, including the anatomical structure, binding, membrane, and metabolic process. Furthermore, the major genes in the upregulated categories included Igkv14-126000, Egr1, Scel, Lamb3, and Upk3b. In contrast, the major genes in the down-regulated categories were Olfr417, Olfr519, Rps16, Rap2b, and Vmn1r193. These results suggest several gene functional groups and individual genes as specific biomarkers respond to inflammation and fibrosis induced by PS-NPs inhalation in ICR mice.

Keywords

Acknowledgement

The authors thank Miss Jin Hyang Hwang, the animal technician, for directing animal care and use at the Laboratory Animal Resources Center at Pusan National University.

References

  1. Vethaak AD, Legler J (2021) Microplastics and human health. Science 371:672-674. https://doi.org/10.1126/science.abe5041 
  2. Park JW, Lee SJ, Hwang DY, Seo S (2020) Recent purification technologies and human health risk assessment of microplastics. Materials (Basel) 13:5196. https://doi.org/10.3390/ma13225196 
  3. Yong CQY, Valiyaveettil S, Tang BL (2020) Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health 17:1509. https://doi.org/10.3390/ijerph17051509 
  4. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Frohlich E (2014) Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol 30:1-16. https://doi.org/10.1007/s10565-013-9265-y 
  5. Schirinzi GF, Perez-Pomeda I, Sanchis J, Rossini C, Farre M, Barcelo D (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579-587. https://doi.org/10.1016/j.envres.2017.08.043 
  6. Wu B, Wu X, Liu S, Wang Z, Chen L (2019) Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221:333-341. https://doi.org/10.1016/j.chemosphere.2019.01.056 
  7. Hwang J, Choi D, Han S, Choi J, Hong J (2019) An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ 684:657-669. https://doi.org/10.1016/j.scitotenv.2019.05.071 
  8. Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH (2020) Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J Hazard Mater 385:121575. https://doi.org/10.1016/j.jhazmat.2019.121575 
  9. Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Li Y, Zhang H (2019) Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ 694:133794. https://doi.org/10.1016/j.scitotenv.2019.133794 
  10. Lim SL, Ng CT, Zou L, Lu Y, Chen J, Bay BH, Shen HM, Ong CN (2019) Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 13:1117-1132. https://doi.org/10.1080/17435390.2019.1640913 
  11. Poma A, Vecchiotti G, Colafarina S, Zarivi O, Aloisi M, Arrizza L, Chichiricco G, Carlo PD (2019) In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line. Nanomaterials (Basel) 9:1299. https://doi.org/10.3390/nano9091299 
  12. Magri D, Sanchez-Moreno P, Caputo G, Gatto F, Veronesi M, Bardi G, Catelani T, Guarnieri D, Athanassiou A, Pompa PP, Fragouli D (2018) Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterisation and toxicology assessment. ACS Nano 12:7690-7700. https://doi.org/10.1021/acsnano.8b01331 
  13. Stock V, Bohmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, Selb R, Lichtenstein D, Voss L, Henderson CJ, Zabinsky E, Sieg H, Braeuning A, Lampen A (2019) Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 93:1817-1833. https://doi.org/10.1007/s00204-019-02478-7 
  14. Hesler M, Aengenheister L, Ellinger B, Drexel R, Straskraba S, Jost C, Wagner S, Meier F, von Briesen H, Buchel C, Wick P, Buerki-Thurnherr T, Kohl Y (2019) Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol In Vitro 61:104610. https://doi.org/10.1016/j.tiv.2019.104610 
  15. Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687. https://doi.org/10.1038/srep46687 
  16. Deng Y, Zhang Y, Qiao R, Bonilla MM, Yang X, Ren H, Lemos B (2018) Evidence that microplastics aggravate the toxicity of organophosphorus fame retardants in mice (Mus musculus). J Hazard Mater 357:348-354. https://doi.org/10.1016/j.jhazmat.2018.06.017 
  17. Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X, Zhang Y (2020) Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 244:125492. https://doi.org/10.1016/j.chemosphere.2019.125492 
  18. Lu L, Wan Z, Luo T, Fu Z, Jin Y (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631-632:449-458. https://doi.org/10.1016/j.scitotenv.2018.03.051 
  19. Jin Y, Lu L, Tu W, Luo T, Fu Z (2019) INPacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308-317. https://doi.org/10.1016/j.scitotenv.2018.08.353 
  20. Yang YF, Chen CY, Lu TH, Liao CM (2019) Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J Hazard Mater 366:703-713. https://doi.org/10.1016/j.jhazmat.2018.12.048 
  21. Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y (2019) Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ Sci Technol 53:10978-10992. https://doi.org/10.1021/acs.est.9b03191 
  22. Rafee M, Dargahi L, Eslami A, Beirami E, Jahangiri-Rad M, Sabour S, Amereh F (2018) Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere 193:745-753. https://doi.org/10.1016/j.chemosphere.2017.11.076 
  23. Amato-Lourenco LF, Galvao LDS, de Weger LA, Hiemstra PS, Vijver MG, Mauad T (2020) An emerging class of air pollutants: potential effects of microplastics to respiratory human health? Sci total environ 749:141676. https://doi.org/10.1016/j.scitotenv.2020.141676 
  24. Lim D, Jeong J, Song KS, Sung JH, Oh SM, Choi J (2021) Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere 262:128330. https://doi.org/10.1016/j.chemosphere.2020.128330 
  25. Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X (2022) Bioeffects of inhaled nanoplastics on neurons and alteration of animal behaviors through deposition in the brain. Nano Lett 22:1091-1099. https://doi.org/10.1021/acs.nanolett.1c04184 
  26. Li Y, Shi T, Li X, Sun H, Xia X, Ji X, Zhang J, Liu M, Lin Y, Zhang R, Zheng Y, Tang J (2022) Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ Int 164:107257. https://doi.org/10.1016/j.envint.2022.107257 
  27. Li X, Zhang T, Lv W, Wang H, Chen H, Xu Q, Cai H, Dai J (2022) Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicol Environ Saf 232:113238. https://doi.org/10.1016/j.ecoenv.2022.113238 
  28. Fan Z, Xiao T, Luo H, Chen D, Lu K, Shi W, Sun C, Bian Q (2022) A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics. Environ Int 163:107223. https://doi.org/10.1016/j.envint.2022.107223 
  29. Park JW, Lee SJ, Hwang DY, Seo S (2021) Removal of microplastics via tannic acid-mediated coagulation and in vitro impact assessment. RSC Adv 11:3556-3566. https://doi.org/10.1039/d0ra09645h 
  30. Wang G, Zheng X, Tang J, Niu Y, Dai Y, Duan H, Zheng Y (2018) LIN28B/let-7 axis mediates pulmonary inflammatory response induced by diesel exhaust particle exposure in mice. Toxicol Lett 299:1-10. https://doi.org/10.1016/j.toxlet.2018.08.019 
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262 
  32. Domenech J, Marcos R (2021) Pathways of human exposure to microplastics, and estimation of the total burden. Curr Opin Food Sci 39:144-151. https://doi.org/10.1016/j.cofs.2021.01.004 
  33. Prata JC, da Costa JP, Lopes I, Duartea AC, Rocha-Santosa T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455 
  34. Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad M, Yu J (2009) Inflammatory mechanisms in the lung. J Inflamm Res 2:1-11. https://doi.org/10.2147/JIR.S4385 
  35. Zuo L, Wijegunawardana D (2021) Redox role of ROS and inflammation in pulmonary diseases. Adv Exp Med Biol 1304:187-204. https://doi.org/10.1007/978-3-030-68748-9_11 
  36. Meyer KC (2017) Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med 11:343-359. https://doi.org/10.1080/17476348.2017.1312346 
  37. Galioto F, Palmucci S, Astuti GM, Vancheri A, Distefano G, Tiralongo F, Libra A, Cusumano G, Basile A, Vancheri C (2020) Complications in idiopathic pulmonary fibrosis: focus on their clinical and radiological features. Diagnostics (Basel) 10:450. https://doi.org/10.3390/diagnostics10070450 
  38. Hung CF (2020) Origin of myofibroblasts in lung fibrosis. Curr Tissue Microenviron Rep 1:155-162. https://doi.org/10.1007/s43152-020-00022-9 
  39. Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5:S5. https://doi.org/10.1186/1755-1536-5-S1-S5 
  40. Giacomelli C, Piccarducci R, Marchetti L, Romei C, Martini C (2021) Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol 193:114812. https://doi.org/10.1016/j.bcp.2021.114812 
  41. Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951-960. https://doi.org/10.1038/nrd961 
  42. Lee SH, Jee SW, Hwang DY, Kang JK (2020) Characterisation of changes in global gene expression in the hearts and kidneys of transgenic mice overexpressing human angiotensin-converting enzyme 2. Lab Anim Res 36:23. https://doi.org/10.1186/s42826-020-00056-y 
  43. Choi JY, Kim SH, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee JH, Jung YS, Hwang DY (2019) Four amino acids as serum biomarkers for anti-asthma effects in the ovalbumin-induced asthma mouse model treated with extract of Asparagus cochinchinensis. Lab Anim Res 35:32. https://doi.org/10.1186/s42826-019-0033-x 
  44. Kim SH, Lee W, Kwon D, Lee S, Son SW, Seo MS, Kim KS, Lee YH, Kim S, Jung YS (2020) Metabolomic analysis of the liver of a dextran sodium sulfate-induced acute colitis mouse model: implications of the gut-liver connection. Cells 9:341. https://doi.org/10.3390/cells9020341 
  45. Yang S, Cheng Y, Chen Z, Liu T, Yin L, Pu Y, Liang G (2021) In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol Environ Saf 226:112837. https://doi.org/10.1016/j.ecoenv.2021.112837 
  46. Kwon S, Kim D, Kim HY, Jeong SW, Lee SG, Kim HC, Lee YJ, Kwon MK, Hwang JS, Han JE, Park JK, Lee SJ, Choi SK (2022) Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci Total Environ 807:150817. https://doi.org/10.1016/j.scitotenv.2021.150817 
  47. Zaheer J, Kim H, Ko IO, Jo EK, Choi EJ, Lee HJ, Shim I, Woo H, Choi J, Kim GH, Kim JS (2022) Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environ Int 161:107121. https://doi.org/10.1016/j.envint.2022.107121 
  48. Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31:477-510. https://doi.org/10.1016/s0197-0186(96)00136-2 
  49. Yan SF, Fujita T, Lu J, Okada K, Zou YS, Mackman N, Pinsky DJ, Stern DM (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6:1355-1361. https://doi.org/10.1038/82168 
  50. McMahon SB, Monroe JG (1996) The role of early growth response gene 1 (egr-1) in regulation of the immune response. J Leukoc Biol 60:159-166. https://doi.org/10.1002/jlb.60.2.159 
  51. Duclot F, Kabbaj M (2017) The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci 11:35. https://doi.org/10.3389/fnbeh.2017.00035 
  52. DeMaria S, Ngai J (2010) The cell biology of smell. J Cell Biol 191:443-452. https://doi.org/10.1083/jcb.201008163 
  53. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211-218. https://doi.org/10.1038/35093026 
  54. Fleischer J, Breer H, Strotmann J (2009) Mammalian olfactory receptors. Front Cell Neurosci 3:9. https://doi.org/10.3389/neuro.03.009.2009