과제정보
This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) and the National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (No. 2023R1A2C1003095).
참고문헌
- Abdollahi, M., Isazadeh, A., and Abdollahi, D. (2013). Imperialist competitive algorithm for solving systems of nonlinear equations. Computers & Mathematics with Applications, 65, 1894-1908. https://doi.org/10.1016/j.camwa.2013.04.018
- Ahearn, D.S., Sheibley, R.W., Dahlgren, R.A., Anderson, M., Johnson, J., and Tate, K.W. (2005). Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313, 234-247. https://doi.org/10.1016/j.jhydrol.2005.02.038
- Ahmed, R., Kumar, P., and Rani, M. (2021). Introduction to challenges and future directions in remote sensing and GIScience. In P. Kumar, H. Sajjad, B.S. Chaudhary, J.S. Rawat, and M. Rani (Eds.), Remote Sensing and GIScience (pp. 3-7). Springer.
- Akay, H. (2021). Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Computing, 25, 9325-9346. https://doi.org/10.1007/s00500-021-05903-1
- Althuwaynee, O.F., Pradhan, B., and Lee, S. (2016). A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. International Journal of Remote Sensing, 37, 1190-1209. https://doi.org/10.1080/01431161.2016.1148282
- Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 53. https://doi.org/10.1186/s40537-021-00444-8
- Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L., and RodrigoComino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of The Total Environment, 658, 160-177. https://doi.org/10.1016/j.scitotenv.2018.12.115
- Arabameri, A., Rezaei, K., Pourghasemi, H.R., Lee, S., and Yamani, M. (2018). GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences, 77, 628. https://doi.org/10.1007/s12665-018-7808-5
- Arora, A., Arabameri, A., Pandey, M., Siddiqui, M.A., Shukla, U.K., Bui, D.T., et al. (2021). Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of The Total Environment, 750, 141565. https://doi.org/10.1016/j.scitotenv.2020.141565
- Asmare, D. (2023). Application and validation of AHP and FR methods for landslide susceptibility mapping around Choke Mountain, Northwestern Ethiopia. Scientific African, 19, e01470. https://doi.org/10.1016/j.sciaf.2022.e01470
- Atashpaz-Gargari, E., and Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Paper presented at 2007 IEEE Congress on Evolutionary Computation, Singapore, Singapore.
- Barve, S., Webster, J.M., and Chandra, R. (2023). Reef-insight: a framework for reef habitat mapping with clustering methods using remote sensing. Information, 14, 373. https://doi.org/10.3390/info14070373
- Beasom, S.L., Wiggers, E.P., and Giardino, J.R. (1983). A technique for assessing land surface ruggedness. The Journal of Wildlife Management, 47, 1163-1166. https://doi.org/10.2307/3808184
- Bonnot, N., Morellet, N., Verheyden, H., Cargnelutti, B., Lourtet, B., Klein, F., et al. (2013). Habitat use under predation risk: hunting, roads and human dwellings influence the spatial behaviour of roe deer. European Journal of Wildlife Research, 59, 185-193. https://doi.org/10.1007/s10344-012-0665-8
- Bradley, A.P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2
- Burnett, B.N., Meyer, G.A., and McFadden, L.D. (2008). Aspectrelated microclimatic influences on slope forms and processes, northeastern Arizona. Journal of Geophysical Research, 113, F03002. https://doi.org/10.1029/2007JF000789
- Cai, T., Huettmann, F., and Guo, Y. (2014). Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China. PLoS One, 9, e89913. https://doi.org/10.1371/journal.pone.0089913
- Cervinka, J., Riegert, J., Grill, S., and Salek, M. (2015). Largescale evaluation of carnivore road mortality: the effect of landscape and local scale characteristics. Mammal Research, 60, 233-243. https://doi.org/10.1007/s13364-015-0226-0
- Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., et al. (2019). Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena, 172, 212-231. https://doi.org/10.1016/j.catena.2018.08.025
- Choi, J.K., Oh, H.J., Koo, B.J., Ryu, J.H., and Lee, S. (2011a). Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS. Ecological Modelling, 222, 1522-1533. https://doi.org/10.1016/j.ecolmodel.2010.12.008
- Choi, J.K., Oh, H.J., Koo, B.J., Ryu, J.H., and Lee, S. (2011b). Spatial polychaeta habitat potential mapping using probabilistic models. Estuarine, Coastal and Shelf Science, 93, 98-105. https://doi.org/10.1016/j.ecss.2011.03.006
- Dahl, F., and Ahlen, P.A. (2019). Nest predation by raccoon dog Nyctereutes procyonoides in the archipelago of northern Sweden. Biological Invasions, 21, 743-755 https://doi.org/10.1007/s10530-018-1855-4
- Dargan, S., Kumar, M., Ayyagari, M.R., and Kumar, G. (2020). A survey of deep learning and its applications: a new paradigm to machine learning. Archives of Computational Methods in Engineering, 27, 1071-1092. https://doi.org/10.1007/s11831-019-09344-w
- Diao, Y., Zhao, Q., Weng, Y., Huang, Z., Wu, Y., Gu, B., et al. (2022). Predicting current and future species distribution of the raccoon dog (Nyctereutes procyonoides) in Shanghai, China. Landscape and Urban Planning, 228, 104581. https://doi.org/10.1016/j.landurbplan.2022.104581
- Dilts, T.E., Blum, M.E., Shoemaker, K.T., Weisberg, P.J., and Stewart, K.M. (2023). Improved topographic ruggedness indices more accurately model fine-scale ecological patterns. Landscape Ecology, 38, 1395-1410. https://doi.org/10.1007/s10980-023-01646-6
- Dodangeh, E., Panahi, M., Rezaie, F., Lee, S., Bui, DT., and Lee, C.W. (2020). Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 590, 125423. https://doi.org/10.1016/j.jhydrol.2020.125423
- Du, P., Bai, X., Tan, K. Xue, Z., Samat, A., Xia, J., et al. (2020). Advances of four machine learning methods for spatial data handling: a review. Journal of Geovisualization and Spatial Analysis, 4, 13. https://doi.org/10.1007/s41651-020-00048-5
- Ellerman, J.R., and Morrison-Scott, T.C.S. (1951). Checklist of Palaearctic and Indian Mammals, 1758-1946. Trustees of the British Museum.
- Farlow, S.J. (1984). Self-Organizing Methods in Modeling: GMDH-Type Algorithms. Marcel Dekker.
- Fernald, A., Tidwell, V., Rivera, J., Rodriguez, S., Guldan, S., Steele, C., et al. (2012). Modeling sustainability of water, environment, livelihood, and culture in traditional irrigation communities and their linked watersheds. Sustainability, 4, 2998-3022. https://doi.org/10.3390/su4112998
- Ghebrezgabher, M.G., Yang, T., Yang, X., and Sereke, T.E. (2020). Assessment of NDVI variations in responses to climate change in the Horn of Africa. The Egyptian Journal of Remote Sensing and Space Science, 23, 249-261. https://doi.org/10.1016/j.ejrs.2020.08.003
- Graves, A. (2012). Long short-term memory. In A. Graves (Ed.), Supervised Sequence Labelling with Recurrent Neural Networks (pp. 37-45). Springer
- Henderson, E.B., and Hoganson, H.M. (2021). A learning heuristic for integrating spatial and temporal detail in forest planning. Natural Resource Modeling, 34, e12299. https://doi.org/10.1111/nrm.12299
- Hong, Y., Kim, K.S., Lee, H., and Min, M.S. (2013). Population genetic study of the raccoon dog (Nyctereutes procyonoides) in South Korea using newly developed 12 microsatellite markers. Genes & genetic systems, 88, 69-76. https://doi.org/10.1266/ggs.88.69
- Hong, Y.J., Kim, K.S., Min, M.S., and Lee, H. (2018). Population structure of the raccoon dog (Nyctereutes procyonoides) using microsatellite loci analysis in South Korea: implications for disease management. The Journal of Veterinary Medical Science, 80, 1631-1638. https://doi.org/10.1292/jvms.17-0456
- Huang, F., Cao, Z., Guo, J., Jiang, S.H., Li, S., and Guo, Z. (2020). Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena, 191, 104580. https://doi.org/10.1016/j.catena.2020.104580
- Ismail, A.A., Wood, T., and Bravo, H.C. (2018). Improving long-horizon forecasts with expectation-biased LSTM networks. arXiv, 1804.06776. https://doi.org/10.48550/arXiv.1804.06776
- Ivakhnenko A.G., and Ivakhnenko G.A. (2000). Problems of further development of the group method of data handling algorithms. Part I. Pattern Recognition and Image Analysis, 10, 187-194.
- Ivakhnenko, A.G. (1970). Heuristic self-organization in problems of engineering cybernetics. Automatica, 6, 207-219. https://doi.org/10.1016/0005-1098(70)90092-0
- Ivakhnenko, A.G. (1978). The group method of data handling in long-range forecasting. Technological Forecasting and Social Change, 12, 213-227. https://doi.org/10.1016/0040-1625(78)90057-4
- Jeong, W., Kim, D.H., Yoon, H., Kim, H.J., Kang, Y.M., Moon, O.K., et al. (2017). Home range differences by habitat type of raccoon dogs Nyctereutes procyonoides (Carnivora: Canidae). Journal of Asia-Pacific Biodiversity, 10, 349-354. https://doi.org/10.1016/j.japb.2017.06.001
- Jie, C., Jiawei, L., Shulin, W., and Sheng, Y. (2018). Feature selection in machine learning: a new perspective. Neurocomputing, 300, 70-79. https://doi.org/10.1016/j.neucom.2017. 11.077
- Khosravi, K., Shahabi, H., Pham, B.T., Adamowski, J., Shirzadi, A., Pradhan, B., et al. (2019). A comparative assessment of flood susceptibility modeling using Multi-Criteria DecisionMaking Analysis and machine learning methods. Journal of Hydrology, 573, 311-323. https://doi.org/10.1016/j.jhydrol.2019.03.073
- Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., and Zhang, Y. (2019). Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart Grid, 10, 841-851. https://doi.org/10.1109/TSG.2017.2753802
- Kopecky, M., Macek, M., and Wild, J. (2021). Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Science of The Total Environment, 757, 143785. https://doi.org/10.1016/j.scitotenv.2020.143785
- Kusuma, W.L., Chih-Da, W., Yu-Ting, Z., Hapsari, H.H., and Muhamad, J.L. (2019). PM2.5 pollutant in Asia-a comparison of metropolis cities in Indonesia and Taiwan. International Journal of Environmental Research and Public Health, 16, 4924. https://doi.org/10.3390/ijerph16244924
- Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791
- Lee, S., and Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33-41. https://doi.org/10.1007/s10346-006-0047-y
- Lee, S., and Rezaie, F. (2021). Application of statistical and machine learning techniques for habitat potential mapping of Siberian roe deer in South Korea. Proceedings of the National Institute of Ecology of the Republic of Korea, 2, 1-14. https://doi.org/10.22920/PNIE.2021.2.1.1
- Lee, S., and Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847-855. https://doi.org/10.1007/s00254-006-0256-7
- Lee, S., and Talib, J.A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982-990. https://doi.org/10.1007/s00254-005-1228-z
- Lee, S., Park, I., Koo, B.J., Ryu, J.H., Choi, J.K., and Woo, H.J. (2013). Macrobenthos habitat potential mapping using GIS-based artificial neural network models. Marine Pollution Bulletin, 67, 177-186. https://doi.org/10.1016/j.marpolbul.2012.10.023
- Lemly, A.D. (1994). Agriculture and wildlife: ecological implications of subsurface irrigation drainage. Journal of Arid Environments, 28, 85-94. https://doi.org/10.1016/S0140-1963(05)80040-0
- Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., et al. (2022). Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowledge and Information Systems, 64, 3197-3234. https://doi.org/10.1007/s10115-022-01756-8
- Liu, C., Newell, G., White, M., and Bennett, A.F. (2018). Identifying wildlife corridors for the restoration of regional habitat connectivity: a multispecies approach and comparison of resistance surfaces. PLoS One, 13, e0206071. https://doi.org/10.1371/journal.pone.0206071
- Lodder, R.A., and Hieftje, G.M. (1988). Quantile analysis: a method for characterizing data distributions. Applied Spectroscopy, 42, 1512-1520. https://doi.org/10.1366/0003702884429724
- Marino, A., and Rodriguez, V. (2022). Competitive exclusion and herbivore management in a context of livestock-wildlife conflict. Austral Ecology, 47, 1208-1221. https://doi.org/10.1111/aec.13210
- Melis, C., Herfindal, I., Dahl, F., and Ahlen, P.A. (2015). Individual and temporal variation in habitat association of an alien carnivore at its invasion front. PLoS One, 10, e0122492. https://doi.org/10.1371/journal.pone.0122492
- Melis, C., Nordgard, H., Herfindal, I., Kauhala, K., Ahlen, PA., Strann, K.B., et al. (2007). Raccoon Dogs in Norway - Potential Expansion Rate, Distribution Area and Management Implications. Norges Teknisk-Naturvitenskapelige Universitet
- Mohanasundaram, S., Baghel, T., Thakur, V., Udmale, P., and Shrestha, S. (2022). Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand. Environmental monitoring and assessment, 195, 211. https://doi.org/10.1007/s10661-022-10802-5
- Mohebbian, M.R., Dinh, A., Wahid, K., and Alam, M.S. (2020). Blind, cuff-less, calibration-free and continuous blood pressure estimation using optimized inductive group method of data handling. Biomedical Signal Processing and Control, 57, 101682. https://doi.org/10.1016/j.bspc.2019.101682
- Mulashani, A.K., Shen, C., Nkurlu, B.M., Mkono, C.N., and Kawamala, M. (2022). Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data. Energy, 239, 121915. https://doi.org/10.1016/j.energy.2021.121915
- Murmu, S., and Biswas, S. (2015). Application of fuzzy logic and neural network in crop classification: a review. Aquatic Procedia, 4, 1203-1210. https://doi.org/10.1016/j.aqpro.2015.02.153
- Oh, H.J., Syifa, M., Lee, C.W., and Lee, S. (2019). Ruditapes philippinarum habitat mapping potential using SVM and Naive Bayes. Journal of Coastal Research, 90, 41-48. https://doi.org/10.2112/SI90-006.1
- Okabe, F., and Agetsuma, N. (2007). Habitat use by introduced raccoons and native raccoon dogs in a deciduous forest of Japan. Journal of Mammalogy, 88, 1090-1097. https://doi.org/10.1644/06-MAMM-A-117R2.1
- Ookura, S., and Mori, H. (2020). An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention. IFAC-PapersOnLine, 53, 12169-12174. https://doi.org/10.1016/j.ifacol.2020.12.1008
- Panahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A.M., et al. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: a study in Western Iran. Journal of Hydrology: Regional Studies, 35, 100825. https://doi.org/10.1016/j.ejrh.2021.100825
- Park, I., Choi, J., Lee, M.J., and Lee, S. (2012). Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers & Geosciences, 48, 228-238. https://doi.org/10.1016/j.cageo.2012.01.005
- Quarantelli, E.L., Lagadec, P., and Boin, A. (2007). A heuristic approach to future disasters and crises: new, old, and inbetween types. In H. Rodriguez, E.L. Quarantelli, R.R. Dynes (Eds.), Handbook of Disaster Research (pp. 16-41). Springer.
- Reich, Y., and Barai, S.V. (1999). Evaluating machine learning models for engineering problems. Artificial Intelligence in Engineering, 13, 257-272. https://doi.org/10.1016/S0954-1810(98)00021-1
- Rezaie, F., Panahi, M., Bateni, S.M., Jun, C., Neale, C.M.U., and Lee, S. (2022a). Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping. Natural Hazards, 114, 1247-1283. https://doi.org/10.1007/s11069-022-05424-6
- Rezaie, F., Panahi, M., Bateni, S.M., Kim, S., Lee, J., Lee, J., et al. (2023). Spatial modeling of geogenic indoor radon distribution in Chungcheongnam-do, South Korea using enhanced machine learning algorithms. Environment international, 171, 107724. https://doi.org/10.1016/j.envint.2022.107724
- Rezaie, F., Panahi, M., Lee, J., Lee, J., Kim, S., Yoo, J., et al. (2022b). Radon potential mapping in Jangsu-gun, South Korea using probabilistic and deep learning algorithms. Environmental pollution (Barking, Essex : 1987), 292(Pt B), 118385. https://doi.org/10.1016/j.envpol.2021.118385
- Riley, S.J., DeGloria, S.D., and Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5, 23-27.
- Ruymgaart, F.H. (1981). A robust principal component analysis. Journal of Multivariate Analysis, 11, 485-497. https://doi.org/10.1016/0047-259X(81)90091-9
- Sabzi, S., Pourdarbani, R., Rohban, M.H., Fuentes-Penna, A., Hernandez-Hernandez, J.L., and Hernandez-Hernandez, M. (2021). Classification of cucumber leaves based on nitrogen content using the hyperspectral imaging technique and majority voting. Plants (Basel, Switzerland), 10, 898. https://doi.org/10.3390/plants10050898
- Saeki, M., Johnson, P.J., and Macdonald, D.W. (2007). Movements and habitat selection of raccoon dogs (Nyctereutes procyonoides) in a mosaic landscape. Journal of Mammalogy, 88, 1098-1111. https://doi.org/10.1644/06-MAMM-A208R1.1
- Sarker I.H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2, 420. https://doi.org/10.1007/s42979-021-00815-1
- Schwemmer, P., Weiel, S., and Garthe, S. (2021). Spatio-temporal movement patterns and habitat choice of red foxes (Vulpes vulpes) and racoon dogs (Nyctereutes procyonoides) along the Wadden Sea coast. European Journal of Wildlife Research, 67, 49. https://doi.org/10.1007/s10344-021-01474-6
- Shi, H., Xu, M., and Li, R. (2018). Deep learning for household load forecasting - a novel pooling deep RNN. IEEE Transactions on Smart Grid, 9, 5271-5280. https://doi.org/10.1109/TSG.2017.2686012
- Sidorovich, V.E., Solovej, I.A., Sidorovich, A.A., and Dyman, A.A. (2008). Seasonal and annual variation in the diet of the raccoon dog Nyctereutes procyonoides in northern Belarus: the role of habitat type and family group. Acta Theriologica, 53, 27-38. https://doi.org/10.1007/BF03194276
- Singh, R., Kainthola, A., and Singh, T.N. (2012). Estimation of elastic constant of rocks using an ANFIS approach. Applied Soft Computing, 12, 40-45. https://doi.org/10.1016/j.asoc.2011.09.010
- Sreedevi, P.D., Sreekanth, P.D., Khan, H.H., and Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environmental Earth Sciences, 70, 839-848. https://doi.org/10.1007/s12665-012-2172-3
- Suld, K., Saarma, U., and Valdmann, H. (2017). Home ranges of raccoon dogs in managed and natural areas. PLoS One, 12, e0171805. https://doi.org/10.1371/journal.pone.0171805
- Sutor, A., and Schwarz, S. (2012). Home ranges of raccoon dogs (Nyctereutes procyonoides, Gray, 1834) in Southern Brandenburg, Germany. European Journal of Wildlife Research, 58, 85-97. https://doi.org/10.1007/s10344-011-0546-6
- Sutor, A., Kauhala, K., and Ansorge, H. (2010). Diet of the raccoon dog Nyctereutes procyonoides - a canid with an opportunistic foraging strategy. Acta Theriologica, 55, 165-176. https://doi.org/10.4098/j.at.0001-7051.035.2009
- Swets J.A. (1988). Measuring the accuracy of diagnostic systems. Science (New York, N.Y.), 240, 1285-1293. https://doi.org/10.1126/science.3287615
- Talukdar, S., and Pal, S. (2019). Effects of damming on the hydrological regime of Punarbhaba river basin wetlands. Ecological Engineering, 135, 61-74. https://doi.org/10.1016/j.ecoleng.2019.05.014
- Teng, J., Xia, S., Liu, Y., Yu, X., Duan, H., Xiao, H., et al. (2021). Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China. Ecological Indicators, 122, 107260. https://doi.org/10.1016/j.ecolind.2020.107260
- Thi Ngo, P.T., Panahi, M., Khosravi, K., Ghorbanzadeh, O., Kariminejad, N., Cerda, A., et al. (2021). Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geoscience Frontiers, 12, 505-519. https://doi.org/10.1016/j.gsf.2020.06.013
- Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Hoang, N.D., Pham, BT., et al. (2018). A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sensing, 10, 1538. https://doi.org/10.3390/rs10101538
- Traba, J., Iranzo, E.C., Carmona, C.P., and Malo, J.E. (2017). Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos, 126, 1400-1409. https://doi.org/10.1111/oik.04066
- Tran, T.T.K., Bateni, S.M., Rezaie, F., Panahi, M., Jun, C., Trauernicht, C., et al. (2023). Enhancing predictive ability of optimized group method of data handling (GMDH) method for wildfire susceptibility mapping. Agricultural and Forest Meteorology, 339, 109587. https://doi.org/10.1016/j.agrformet.2023.109587
- Van Pham, T., Trinh, M.T., Gray, R.J., Cao, L.N., Van Nguyen, T., Van Nguyen, M., et al. (2023). Southern extension of raccoon dog Nyctereutes procyonoides (Mammalia: Carnivora: Canidae) range in Vietnam with comments on its conservation status in the country. European Journal of Wildlife Research, 69, 22. https://doi.org/10.1007/s10344-023-01653-7
- Wang, D., Laffan, S.W., Liu, Y., and Wu, L. (2010). Morphometric characterisation of landform from DEMs. International Journal of Geographical Information Science, 24, 305-326. https://doi.org/10.1080/13658810802467969
- Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., et al. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of environmental management, 247, 712-729. https://doi.org/10.1016/j.jenvman.2019.06.102
- Wilson, J.P. (2018). Environmental Applications of Digital Terrain Modeling. John Wiley & Sons.
- Won, P.H. (1967). Illustrated Encyclopedia of Fauna and Flora of Korea. Volume 7, Mammals. Samhwabook.
- Xie, Y., Yu, X., Ng, N.C., Li, K., and Fang, L. (2018). Exploring the dynamic correlation of landscape composition and habitat fragmentation with surface water quality in the Shenzhen river and deep bay cross-border watershed, China. Ecological Indicators, 90, 231-246. https://doi.org/10.1016/j.ecolind.2017.11.051
- Yalcin, A., Reis, S., Aydinoglu, A.C., and Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85, 274-287. https://doi.org/10.1016/j.catena.2011.01.014
- Yamashita, R., Nishio, M., Do, R.K.G., and Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9, 611-629. https://doi.org/10.1007/s13244-018-0639-9
- Yang, D.K., Lee, S.H., Kim, H.H., Kim, J.T., Ahn, S., and Cho, I.S. (2017). Detection of viral infections in wild Korean raccoon dogs (Nyctereutes procyonoides koreensis). Korean Journal of Veterinary Research, 57, 209-214. https://doi.org/10.14405/kjvr.2017.57.4.209
- Yu, D., Wang, H., Chen, P., and Wei, Z. (2014). Mixed pooling for convolutional neural networks. In D. Miao, W. Pedrycz, D. Slezak, G. Peters, Q. Hu, R. Wang (Eds.), Rough Sets and Knowledge Technology (pp. 364-375). Springer, Cham.
- Zabihi, K., Paige, G.B., Hild, A.L., Miller, S.N., Wuenschel, A., and Holloran, M.J. (2017). A fuzzy logic approach to analyse the suitability of nesting habitat for greater sage-grouse in western Wyoming, Journal of Spatial Science, 62, 215-234. https://doi.org/10.1080/14498596.2017.1292965
- Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S., Alruban, A., et al. (2022). A comparison of pooling methods for convolutional neural networks. Applied Sciences, 12, 8643. https://doi.org/10.3390/app12178643
- Zhang, C.L., and Wu, J. (2019). Improving CNN linear layers with power mean non-linearity. Pattern Recognition, 89, 12-21. https://doi.org/10.1016/j.patcog.2018.12.029
- Zhang, M., He, C., Gu, X., Liatsis, P., and Zhu, B. (2013). D-GMDH: a novel inductive modelling approach in the forecasting of the industrial economy. Economic Modelling, 30, 514-520. https://doi.org/10.1016/j.econmod.2012.09.021
- Zhang, Z., Gong, J., Liu, J., and Chen, F. (2022). A fast twostage hybrid meta-heuristic algorithm for robust corridor allocation problem. Advanced Engineering Informatics, 53, 101700 https://doi.org/10.1016/j.aei.2022.101700
- Zhisheng, A., Guoxiong, W., Jianping, L., Youbin, S., Yimin, L., Weijian, Z., et al. (2015). Global monsoon dynamics and climate change. Annual review of earth and planetary sciences, 43, 29-77. https://doi.org/10.1146/annurevearth-060313-054623
- Zzaman, R.U., Nowreen, S., Billah, M., and Islam, A.S. (2021). Flood hazard mapping of Sangu River basin in Bangladesh using multi-criteria analysis of hydro-geomorphological factors. Journal of Flood Risk Management, 14, e12715. https://doi.org/10.1111/jfr3.12715