DOI QR코드

DOI QR Code

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya (Department of Science Education, Kangwon National University) ;
  • Fatemah Rezaie (Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Saro Lee (Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2023.08.25
  • 심사 : 2023.10.24
  • 발행 : 2023.11.01

초록

The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

키워드

과제정보

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) and the National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (No. 2023R1A2C1003095).

참고문헌

  1. Abdollahi, M., Isazadeh, A., and Abdollahi, D. (2013). Imperialist competitive algorithm for solving systems of nonlinear equations. Computers & Mathematics with Applications, 65, 1894-1908. https://doi.org/10.1016/j.camwa.2013.04.018 
  2. Ahearn, D.S., Sheibley, R.W., Dahlgren, R.A., Anderson, M., Johnson, J., and Tate, K.W. (2005). Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313, 234-247. https://doi.org/10.1016/j.jhydrol.2005.02.038 
  3. Ahmed, R., Kumar, P., and Rani, M. (2021). Introduction to challenges and future directions in remote sensing and GIScience. In P. Kumar, H. Sajjad, B.S. Chaudhary, J.S. Rawat, and M. Rani (Eds.), Remote Sensing and GIScience (pp. 3-7). Springer. 
  4. Akay, H. (2021). Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Computing, 25, 9325-9346. https://doi.org/10.1007/s00500-021-05903-1 
  5. Althuwaynee, O.F., Pradhan, B., and Lee, S. (2016). A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. International Journal of Remote Sensing, 37, 1190-1209. https://doi.org/10.1080/01431161.2016.1148282 
  6. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 53. https://doi.org/10.1186/s40537-021-00444-8 
  7. Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L., and RodrigoComino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of The Total Environment, 658, 160-177. https://doi.org/10.1016/j.scitotenv.2018.12.115 
  8. Arabameri, A., Rezaei, K., Pourghasemi, H.R., Lee, S., and Yamani, M. (2018). GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences, 77, 628. https://doi.org/10.1007/s12665-018-7808-5 
  9. Arora, A., Arabameri, A., Pandey, M., Siddiqui, M.A., Shukla, U.K., Bui, D.T., et al. (2021). Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of The Total Environment, 750, 141565. https://doi.org/10.1016/j.scitotenv.2020.141565 
  10. Asmare, D. (2023). Application and validation of AHP and FR methods for landslide susceptibility mapping around Choke Mountain, Northwestern Ethiopia. Scientific African, 19, e01470. https://doi.org/10.1016/j.sciaf.2022.e01470 
  11. Atashpaz-Gargari, E., and Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Paper presented at 2007 IEEE Congress on Evolutionary Computation, Singapore, Singapore. 
  12. Barve, S., Webster, J.M., and Chandra, R. (2023). Reef-insight: a framework for reef habitat mapping with clustering methods using remote sensing. Information, 14, 373. https://doi.org/10.3390/info14070373 
  13. Beasom, S.L., Wiggers, E.P., and Giardino, J.R. (1983). A technique for assessing land surface ruggedness. The Journal of Wildlife Management, 47, 1163-1166. https://doi.org/10.2307/3808184 
  14. Bonnot, N., Morellet, N., Verheyden, H., Cargnelutti, B., Lourtet, B., Klein, F., et al. (2013). Habitat use under predation risk: hunting, roads and human dwellings influence the spatial behaviour of roe deer. European Journal of Wildlife Research, 59, 185-193. https://doi.org/10.1007/s10344-012-0665-8 
  15. Bradley, A.P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2 
  16. Burnett, B.N., Meyer, G.A., and McFadden, L.D. (2008). Aspectrelated microclimatic influences on slope forms and processes, northeastern Arizona. Journal of Geophysical Research, 113, F03002. https://doi.org/10.1029/2007JF000789 
  17. Cai, T., Huettmann, F., and Guo, Y. (2014). Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China. PLoS One, 9, e89913. https://doi.org/10.1371/journal.pone.0089913 
  18. Cervinka, J., Riegert, J., Grill, S., and Salek, M. (2015). Largescale evaluation of carnivore road mortality: the effect of landscape and local scale characteristics. Mammal Research, 60, 233-243. https://doi.org/10.1007/s13364-015-0226-0 
  19. Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., et al. (2019). Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena, 172, 212-231. https://doi.org/10.1016/j.catena.2018.08.025 
  20. Choi, J.K., Oh, H.J., Koo, B.J., Ryu, J.H., and Lee, S. (2011a). Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS. Ecological Modelling, 222, 1522-1533. https://doi.org/10.1016/j.ecolmodel.2010.12.008 
  21. Choi, J.K., Oh, H.J., Koo, B.J., Ryu, J.H., and Lee, S. (2011b). Spatial polychaeta habitat potential mapping using probabilistic models. Estuarine, Coastal and Shelf Science, 93, 98-105. https://doi.org/10.1016/j.ecss.2011.03.006 
  22. Dahl, F., and Ahlen, P.A. (2019). Nest predation by raccoon dog Nyctereutes procyonoides in the archipelago of northern Sweden. Biological Invasions, 21, 743-755 https://doi.org/10.1007/s10530-018-1855-4 
  23. Dargan, S., Kumar, M., Ayyagari, M.R., and Kumar, G. (2020). A survey of deep learning and its applications: a new paradigm to machine learning. Archives of Computational Methods in Engineering, 27, 1071-1092. https://doi.org/10.1007/s11831-019-09344-w 
  24. Diao, Y., Zhao, Q., Weng, Y., Huang, Z., Wu, Y., Gu, B., et al. (2022). Predicting current and future species distribution of the raccoon dog (Nyctereutes procyonoides) in Shanghai, China. Landscape and Urban Planning, 228, 104581. https://doi.org/10.1016/j.landurbplan.2022.104581 
  25. Dilts, T.E., Blum, M.E., Shoemaker, K.T., Weisberg, P.J., and Stewart, K.M. (2023). Improved topographic ruggedness indices more accurately model fine-scale ecological patterns. Landscape Ecology, 38, 1395-1410. https://doi.org/10.1007/s10980-023-01646-6 
  26. Dodangeh, E., Panahi, M., Rezaie, F., Lee, S., Bui, DT., and Lee, C.W. (2020). Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 590, 125423. https://doi.org/10.1016/j.jhydrol.2020.125423 
  27. Du, P., Bai, X., Tan, K. Xue, Z., Samat, A., Xia, J., et al. (2020). Advances of four machine learning methods for spatial data handling: a review. Journal of Geovisualization and Spatial Analysis, 4, 13. https://doi.org/10.1007/s41651-020-00048-5 
  28. Ellerman, J.R., and Morrison-Scott, T.C.S. (1951). Checklist of Palaearctic and Indian Mammals, 1758-1946. Trustees of the British Museum. 
  29. Farlow, S.J. (1984). Self-Organizing Methods in Modeling: GMDH-Type Algorithms. Marcel Dekker. 
  30. Fernald, A., Tidwell, V., Rivera, J., Rodriguez, S., Guldan, S., Steele, C., et al. (2012). Modeling sustainability of water, environment, livelihood, and culture in traditional irrigation communities and their linked watersheds. Sustainability, 4, 2998-3022. https://doi.org/10.3390/su4112998 
  31. Ghebrezgabher, M.G., Yang, T., Yang, X., and Sereke, T.E. (2020). Assessment of NDVI variations in responses to climate change in the Horn of Africa. The Egyptian Journal of Remote Sensing and Space Science, 23, 249-261. https://doi.org/10.1016/j.ejrs.2020.08.003 
  32. Graves, A. (2012). Long short-term memory. In A. Graves (Ed.), Supervised Sequence Labelling with Recurrent Neural Networks (pp. 37-45). Springer 
  33. Henderson, E.B., and Hoganson, H.M. (2021). A learning heuristic for integrating spatial and temporal detail in forest planning. Natural Resource Modeling, 34, e12299. https://doi.org/10.1111/nrm.12299 
  34. Hong, Y., Kim, K.S., Lee, H., and Min, M.S. (2013). Population genetic study of the raccoon dog (Nyctereutes procyonoides) in South Korea using newly developed 12 microsatellite markers. Genes & genetic systems, 88, 69-76. https://doi.org/10.1266/ggs.88.69 
  35. Hong, Y.J., Kim, K.S., Min, M.S., and Lee, H. (2018). Population structure of the raccoon dog (Nyctereutes procyonoides) using microsatellite loci analysis in South Korea: implications for disease management. The Journal of Veterinary Medical Science, 80, 1631-1638. https://doi.org/10.1292/jvms.17-0456 
  36. Huang, F., Cao, Z., Guo, J., Jiang, S.H., Li, S., and Guo, Z. (2020). Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena, 191, 104580. https://doi.org/10.1016/j.catena.2020.104580 
  37. Ismail, A.A., Wood, T., and Bravo, H.C. (2018). Improving long-horizon forecasts with expectation-biased LSTM networks. arXiv, 1804.06776. https://doi.org/10.48550/arXiv.1804.06776 
  38. Ivakhnenko A.G., and Ivakhnenko G.A. (2000). Problems of further development of the group method of data handling algorithms. Part I. Pattern Recognition and Image Analysis, 10, 187-194. 
  39. Ivakhnenko, A.G. (1970). Heuristic self-organization in problems of engineering cybernetics. Automatica, 6, 207-219. https://doi.org/10.1016/0005-1098(70)90092-0 
  40. Ivakhnenko, A.G. (1978). The group method of data handling in long-range forecasting. Technological Forecasting and Social Change, 12, 213-227. https://doi.org/10.1016/0040-1625(78)90057-4 
  41. Jeong, W., Kim, D.H., Yoon, H., Kim, H.J., Kang, Y.M., Moon, O.K., et al. (2017). Home range differences by habitat type of raccoon dogs Nyctereutes procyonoides (Carnivora: Canidae). Journal of Asia-Pacific Biodiversity, 10, 349-354. https://doi.org/10.1016/j.japb.2017.06.001 
  42. Jie, C., Jiawei, L., Shulin, W., and Sheng, Y. (2018). Feature selection in machine learning: a new perspective. Neurocomputing, 300, 70-79. https://doi.org/10.1016/j.neucom.2017. 11.077 
  43. Khosravi, K., Shahabi, H., Pham, B.T., Adamowski, J., Shirzadi, A., Pradhan, B., et al. (2019). A comparative assessment of flood susceptibility modeling using Multi-Criteria DecisionMaking Analysis and machine learning methods. Journal of Hydrology, 573, 311-323. https://doi.org/10.1016/j.jhydrol.2019.03.073 
  44. Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., and Zhang, Y. (2019). Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart Grid, 10, 841-851. https://doi.org/10.1109/TSG.2017.2753802 
  45. Kopecky, M., Macek, M., and Wild, J. (2021). Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Science of The Total Environment, 757, 143785. https://doi.org/10.1016/j.scitotenv.2020.143785 
  46. Kusuma, W.L., Chih-Da, W., Yu-Ting, Z., Hapsari, H.H., and Muhamad, J.L. (2019). PM2.5 pollutant in Asia-a comparison of metropolis cities in Indonesia and Taiwan. International Journal of Environmental Research and Public Health, 16, 4924. https://doi.org/10.3390/ijerph16244924 
  47. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791 
  48. Lee, S., and Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33-41. https://doi.org/10.1007/s10346-006-0047-y 
  49. Lee, S., and Rezaie, F. (2021). Application of statistical and machine learning techniques for habitat potential mapping of Siberian roe deer in South Korea. Proceedings of the National Institute of Ecology of the Republic of Korea, 2, 1-14. https://doi.org/10.22920/PNIE.2021.2.1.1 
  50. Lee, S., and Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847-855. https://doi.org/10.1007/s00254-006-0256-7 
  51. Lee, S., and Talib, J.A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982-990. https://doi.org/10.1007/s00254-005-1228-z 
  52. Lee, S., Park, I., Koo, B.J., Ryu, J.H., Choi, J.K., and Woo, H.J. (2013). Macrobenthos habitat potential mapping using GIS-based artificial neural network models. Marine Pollution Bulletin, 67, 177-186. https://doi.org/10.1016/j.marpolbul.2012.10.023 
  53. Lemly, A.D. (1994). Agriculture and wildlife: ecological implications of subsurface irrigation drainage. Journal of Arid Environments, 28, 85-94. https://doi.org/10.1016/S0140-1963(05)80040-0 
  54. Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., et al. (2022). Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowledge and Information Systems, 64, 3197-3234. https://doi.org/10.1007/s10115-022-01756-8 
  55. Liu, C., Newell, G., White, M., and Bennett, A.F. (2018). Identifying wildlife corridors for the restoration of regional habitat connectivity: a multispecies approach and comparison of resistance surfaces. PLoS One, 13, e0206071. https://doi.org/10.1371/journal.pone.0206071 
  56. Lodder, R.A., and Hieftje, G.M. (1988). Quantile analysis: a method for characterizing data distributions. Applied Spectroscopy, 42, 1512-1520.  https://doi.org/10.1366/0003702884429724
  57. Marino, A., and Rodriguez, V. (2022). Competitive exclusion and herbivore management in a context of livestock-wildlife conflict. Austral Ecology, 47, 1208-1221. https://doi.org/10.1111/aec.13210 
  58. Melis, C., Herfindal, I., Dahl, F., and Ahlen, P.A. (2015). Individual and temporal variation in habitat association of an alien carnivore at its invasion front. PLoS One, 10, e0122492. https://doi.org/10.1371/journal.pone.0122492 
  59. Melis, C., Nordgard, H., Herfindal, I., Kauhala, K., Ahlen, PA., Strann, K.B., et al. (2007). Raccoon Dogs in Norway - Potential Expansion Rate, Distribution Area and Management Implications. Norges Teknisk-Naturvitenskapelige Universitet 
  60. Mohanasundaram, S., Baghel, T., Thakur, V., Udmale, P., and Shrestha, S. (2022). Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand. Environmental monitoring and assessment, 195, 211. https://doi.org/10.1007/s10661-022-10802-5 
  61. Mohebbian, M.R., Dinh, A., Wahid, K., and Alam, M.S. (2020). Blind, cuff-less, calibration-free and continuous blood pressure estimation using optimized inductive group method of data handling. Biomedical Signal Processing and Control, 57, 101682. https://doi.org/10.1016/j.bspc.2019.101682 
  62. Mulashani, A.K., Shen, C., Nkurlu, B.M., Mkono, C.N., and Kawamala, M. (2022). Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data. Energy, 239, 121915. https://doi.org/10.1016/j.energy.2021.121915 
  63. Murmu, S., and Biswas, S. (2015). Application of fuzzy logic and neural network in crop classification: a review. Aquatic Procedia, 4, 1203-1210. https://doi.org/10.1016/j.aqpro.2015.02.153 
  64. Oh, H.J., Syifa, M., Lee, C.W., and Lee, S. (2019). Ruditapes philippinarum habitat mapping potential using SVM and Naive Bayes. Journal of Coastal Research, 90, 41-48. https://doi.org/10.2112/SI90-006.1 
  65. Okabe, F., and Agetsuma, N. (2007). Habitat use by introduced raccoons and native raccoon dogs in a deciduous forest of Japan. Journal of Mammalogy, 88, 1090-1097. https://doi.org/10.1644/06-MAMM-A-117R2.1 
  66. Ookura, S., and Mori, H. (2020). An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention. IFAC-PapersOnLine, 53, 12169-12174. https://doi.org/10.1016/j.ifacol.2020.12.1008 
  67. Panahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A.M., et al. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: a study in Western Iran. Journal of Hydrology: Regional Studies, 35, 100825. https://doi.org/10.1016/j.ejrh.2021.100825 
  68. Park, I., Choi, J., Lee, M.J., and Lee, S. (2012). Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers & Geosciences, 48, 228-238. https://doi.org/10.1016/j.cageo.2012.01.005 
  69. Quarantelli, E.L., Lagadec, P., and Boin, A. (2007). A heuristic approach to future disasters and crises: new, old, and inbetween types. In H. Rodriguez, E.L. Quarantelli, R.R. Dynes (Eds.), Handbook of Disaster Research (pp. 16-41). Springer. 
  70. Reich, Y., and Barai, S.V. (1999). Evaluating machine learning models for engineering problems. Artificial Intelligence in Engineering, 13, 257-272. https://doi.org/10.1016/S0954-1810(98)00021-1 
  71. Rezaie, F., Panahi, M., Bateni, S.M., Jun, C., Neale, C.M.U., and Lee, S. (2022a). Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping. Natural Hazards, 114, 1247-1283. https://doi.org/10.1007/s11069-022-05424-6 
  72. Rezaie, F., Panahi, M., Bateni, S.M., Kim, S., Lee, J., Lee, J., et al. (2023). Spatial modeling of geogenic indoor radon distribution in Chungcheongnam-do, South Korea using enhanced machine learning algorithms. Environment international, 171, 107724. https://doi.org/10.1016/j.envint.2022.107724 
  73. Rezaie, F., Panahi, M., Lee, J., Lee, J., Kim, S., Yoo, J., et al. (2022b). Radon potential mapping in Jangsu-gun, South Korea using probabilistic and deep learning algorithms. Environmental pollution (Barking, Essex : 1987), 292(Pt B), 118385. https://doi.org/10.1016/j.envpol.2021.118385 
  74. Riley, S.J., DeGloria, S.D., and Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5, 23-27. 
  75. Ruymgaart, F.H. (1981). A robust principal component analysis. Journal of Multivariate Analysis, 11, 485-497. https://doi.org/10.1016/0047-259X(81)90091-9 
  76. Sabzi, S., Pourdarbani, R., Rohban, M.H., Fuentes-Penna, A., Hernandez-Hernandez, J.L., and Hernandez-Hernandez, M. (2021). Classification of cucumber leaves based on nitrogen content using the hyperspectral imaging technique and majority voting. Plants (Basel, Switzerland), 10, 898. https://doi.org/10.3390/plants10050898 
  77. Saeki, M., Johnson, P.J., and Macdonald, D.W. (2007). Movements and habitat selection of raccoon dogs (Nyctereutes procyonoides) in a mosaic landscape. Journal of Mammalogy, 88, 1098-1111. https://doi.org/10.1644/06-MAMM-A208R1.1 
  78. Sarker I.H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2, 420. https://doi.org/10.1007/s42979-021-00815-1 
  79. Schwemmer, P., Weiel, S., and Garthe, S. (2021). Spatio-temporal movement patterns and habitat choice of red foxes (Vulpes vulpes) and racoon dogs (Nyctereutes procyonoides) along the Wadden Sea coast. European Journal of Wildlife Research, 67, 49. https://doi.org/10.1007/s10344-021-01474-6 
  80. Shi, H., Xu, M., and Li, R. (2018). Deep learning for household load forecasting - a novel pooling deep RNN. IEEE Transactions on Smart Grid, 9, 5271-5280. https://doi.org/10.1109/TSG.2017.2686012 
  81. Sidorovich, V.E., Solovej, I.A., Sidorovich, A.A., and Dyman, A.A. (2008). Seasonal and annual variation in the diet of the raccoon dog Nyctereutes procyonoides in northern Belarus: the role of habitat type and family group. Acta Theriologica, 53, 27-38. https://doi.org/10.1007/BF03194276 
  82. Singh, R., Kainthola, A., and Singh, T.N. (2012). Estimation of elastic constant of rocks using an ANFIS approach. Applied Soft Computing, 12, 40-45. https://doi.org/10.1016/j.asoc.2011.09.010 
  83. Sreedevi, P.D., Sreekanth, P.D., Khan, H.H., and Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environmental Earth Sciences, 70, 839-848. https://doi.org/10.1007/s12665-012-2172-3 
  84. Suld, K., Saarma, U., and Valdmann, H. (2017). Home ranges of raccoon dogs in managed and natural areas. PLoS One, 12, e0171805. https://doi.org/10.1371/journal.pone.0171805 
  85. Sutor, A., and Schwarz, S. (2012). Home ranges of raccoon dogs (Nyctereutes procyonoides, Gray, 1834) in Southern Brandenburg, Germany. European Journal of Wildlife Research, 58, 85-97. https://doi.org/10.1007/s10344-011-0546-6 
  86. Sutor, A., Kauhala, K., and Ansorge, H. (2010). Diet of the raccoon dog Nyctereutes procyonoides - a canid with an opportunistic foraging strategy. Acta Theriologica, 55, 165-176. https://doi.org/10.4098/j.at.0001-7051.035.2009 
  87. Swets J.A. (1988). Measuring the accuracy of diagnostic systems. Science (New York, N.Y.), 240, 1285-1293. https://doi.org/10.1126/science.3287615 
  88. Talukdar, S., and Pal, S. (2019). Effects of damming on the hydrological regime of Punarbhaba river basin wetlands. Ecological Engineering, 135, 61-74. https://doi.org/10.1016/j.ecoleng.2019.05.014 
  89. Teng, J., Xia, S., Liu, Y., Yu, X., Duan, H., Xiao, H., et al. (2021). Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China. Ecological Indicators, 122, 107260. https://doi.org/10.1016/j.ecolind.2020.107260 
  90. Thi Ngo, P.T., Panahi, M., Khosravi, K., Ghorbanzadeh, O., Kariminejad, N., Cerda, A., et al. (2021). Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geoscience Frontiers, 12, 505-519. https://doi.org/10.1016/j.gsf.2020.06.013 
  91. Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Hoang, N.D., Pham, BT., et al. (2018). A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sensing, 10, 1538. https://doi.org/10.3390/rs10101538 
  92. Traba, J., Iranzo, E.C., Carmona, C.P., and Malo, J.E. (2017). Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos, 126, 1400-1409. https://doi.org/10.1111/oik.04066 
  93. Tran, T.T.K., Bateni, S.M., Rezaie, F., Panahi, M., Jun, C., Trauernicht, C., et al. (2023). Enhancing predictive ability of optimized group method of data handling (GMDH) method for wildfire susceptibility mapping. Agricultural and Forest Meteorology, 339, 109587. https://doi.org/10.1016/j.agrformet.2023.109587 
  94. Van Pham, T., Trinh, M.T., Gray, R.J., Cao, L.N., Van Nguyen, T., Van Nguyen, M., et al. (2023). Southern extension of raccoon dog Nyctereutes procyonoides (Mammalia: Carnivora: Canidae) range in Vietnam with comments on its conservation status in the country. European Journal of Wildlife Research, 69, 22. https://doi.org/10.1007/s10344-023-01653-7 
  95. Wang, D., Laffan, S.W., Liu, Y., and Wu, L. (2010). Morphometric characterisation of landform from DEMs. International Journal of Geographical Information Science, 24, 305-326. https://doi.org/10.1080/13658810802467969 
  96. Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., et al. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of environmental management, 247, 712-729. https://doi.org/10.1016/j.jenvman.2019.06.102 
  97. Wilson, J.P. (2018). Environmental Applications of Digital Terrain Modeling. John Wiley & Sons. 
  98. Won, P.H. (1967). Illustrated Encyclopedia of Fauna and Flora of Korea. Volume 7, Mammals. Samhwabook. 
  99. Xie, Y., Yu, X., Ng, N.C., Li, K., and Fang, L. (2018). Exploring the dynamic correlation of landscape composition and habitat fragmentation with surface water quality in the Shenzhen river and deep bay cross-border watershed, China. Ecological Indicators, 90, 231-246. https://doi.org/10.1016/j.ecolind.2017.11.051 
  100. Yalcin, A., Reis, S., Aydinoglu, A.C., and Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85, 274-287. https://doi.org/10.1016/j.catena.2011.01.014 
  101. Yamashita, R., Nishio, M., Do, R.K.G., and Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9, 611-629. https://doi.org/10.1007/s13244-018-0639-9 
  102. Yang, D.K., Lee, S.H., Kim, H.H., Kim, J.T., Ahn, S., and Cho, I.S. (2017). Detection of viral infections in wild Korean raccoon dogs (Nyctereutes procyonoides koreensis). Korean Journal of Veterinary Research, 57, 209-214. https://doi.org/10.14405/kjvr.2017.57.4.209 
  103. Yu, D., Wang, H., Chen, P., and Wei, Z. (2014). Mixed pooling for convolutional neural networks. In D. Miao, W. Pedrycz, D. Slezak, G. Peters, Q. Hu, R. Wang (Eds.), Rough Sets and Knowledge Technology (pp. 364-375). Springer, Cham. 
  104. Zabihi, K., Paige, G.B., Hild, A.L., Miller, S.N., Wuenschel, A., and Holloran, M.J. (2017). A fuzzy logic approach to analyse the suitability of nesting habitat for greater sage-grouse in western Wyoming, Journal of Spatial Science, 62, 215-234. https://doi.org/10.1080/14498596.2017.1292965 
  105. Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S., Alruban, A., et al. (2022). A comparison of pooling methods for convolutional neural networks. Applied Sciences, 12, 8643. https://doi.org/10.3390/app12178643 
  106. Zhang, C.L., and Wu, J. (2019). Improving CNN linear layers with power mean non-linearity. Pattern Recognition, 89, 12-21. https://doi.org/10.1016/j.patcog.2018.12.029 
  107. Zhang, M., He, C., Gu, X., Liatsis, P., and Zhu, B. (2013). D-GMDH: a novel inductive modelling approach in the forecasting of the industrial economy. Economic Modelling, 30, 514-520. https://doi.org/10.1016/j.econmod.2012.09.021 
  108. Zhang, Z., Gong, J., Liu, J., and Chen, F. (2022). A fast twostage hybrid meta-heuristic algorithm for robust corridor allocation problem. Advanced Engineering Informatics, 53, 101700 https://doi.org/10.1016/j.aei.2022.101700 
  109. Zhisheng, A., Guoxiong, W., Jianping, L., Youbin, S., Yimin, L., Weijian, Z., et al. (2015). Global monsoon dynamics and climate change. Annual review of earth and planetary sciences, 43, 29-77. https://doi.org/10.1146/annurevearth-060313-054623 
  110. Zzaman, R.U., Nowreen, S., Billah, M., and Islam, A.S. (2021). Flood hazard mapping of Sangu River basin in Bangladesh using multi-criteria analysis of hydro-geomorphological factors. Journal of Flood Risk Management, 14, e12715. https://doi.org/10.1111/jfr3.12715