DOI QR코드

DOI QR Code

Evaluation of Waterjet Cavitating Performances for a Amphibious Vehicle

수륙양용장갑차용 워터젯 추진기 캐비테이션 성능 평가

  • Jaemoon Han (Amphibious Systems R&D Center, Hanwha Aerospace Co., Ltd.) ;
  • Dojun Kim (Amphibious Systems R&D Center, Hanwha Aerospace Co., Ltd.) ;
  • Jeongil Seo (Agency for Defense Development) ;
  • Taehyung Kim (Agency for Defense Development) ;
  • Gundo Kim (Korea Research Institute of Ships & Ocean Engineering) ;
  • Jinsuk Lee (Amphibious Systems R&D Center, Hanwha Aerospace Co., Ltd.)
  • 한재문 (한화에어로스페이스(주) 수상체계연구센터) ;
  • 김도준 (한화에어로스페이스(주) 수상체계연구센터) ;
  • 서정일 (국방과학연구소) ;
  • 김태형 (국방과학연구소) ;
  • 김건도 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 이진석 (한화에어로스페이스(주) 수상체계연구센터)
  • Received : 2022.11.19
  • Accepted : 2023.07.26
  • Published : 2023.10.20

Abstract

Cavitation tests for a waterjet propulsor of an amphibious vehicle are carried out in the Large Cavitation Tunnel. Waterjet pump performances and cavitation characteristics including thrust breakdown performances are investigated in the tests. In addition, cavitation characteristics for waterjet propulsors working inside the intake are calculated by using a commercial CFD code, Star-CCM+. Sliding mesh is implemented to a rotating impeller and the k-epsilon turbulence model is chosen. Cavitation bubble growth and collapse are estimated using the Schnerr-Sauer cavitation model based on Rayleigh-Plasset equation. Calculated results agree fairly well with experimental results. The re-design of the waterjet propulsor is performed to enhance waterjet cavitating performances and calculated results show that waterjet thrust breakdown characteristics are significantly improved.

Keywords

References

  1. Ahn, J.W., Kim, K.S., Park, Y.H., Kim, K.Y. and Oh, H.W., 2005. Performance analysis of a mixed-flow pump for waterjet propulsion. Journal of Ship & Ocean Technology, 9(2), pp. 11-20.
  2. Ahn, J.W., Kim, G.D., Kim, K.S. and Park, Y.H., 2010. Development of the weight reduction pump for waterjet propulsion. Journal of the Society of Naval Architects of Korea, 47(1), pp. 30-37. https://doi.org/10.3744/SNAK.2010.47.1.030
  3. Dang, J., Liu, R. and Pouw, C., 2013. Waterjet system performance and cavitation test procedures. Third International Symposium on Marine Propulsors, Tasmania, Australia.
  4. Ferziger, J.H. and Peric, M., 2001. Computational methods for fluid dynamics. Springer-Verlag Berline, Third Edition, pp. 188-196.
  5. Han, J., Seo, J., Kim, T., Kim, D. and Lee, J., 2020. Analysis of waterjet cavitating performances for amphibious vehicles. KIMST Annual Conference Proceedings, Daejeon, Korea.
  6. Kim, D., Seo, J., Kim, T., Han J. and Lee, J., 2020. Grid methodology for the analysis of hydrodynamic performances of amphibious assault vehicles. KIMST Annual Conference Proceedings, Daejeon, Korea.
  7. Kim, J.I., Park, I.R., Kim, K.S. and Ahn, J.W., 2017. Numerical analysis of non-cavitating and cavitating performance of a SVA potsdam propeller. Journal of the Society of Naval Architects of Korea, 54(3), pp. 215-226. https://doi.org/10.3744/SNAK.2017.54.3.215
  8. Kim, T., 2021. Numerical analysis on the resistance and propulsion performances of high-speed amphibious assault vehicles. Journal of the KIMST, 24(1), pp. 84-98. https://doi.org/10.9766/KIMST.2021.24.1.084
  9. Kim, T., Seo, J., Han, J. and Kim, D., 2021. Cavitation performances evaluation results for a waterjet propulsion system with an amphibious vehicle hull. The 11th International Symposium on Cavitation, Daejeon, Korea.
  10. Lindau, J.W., Boger, D.A., Medvitz, R.B. and Kunz, R.F., 2005. Propeller cavitation breakdown analysis. Journal of Fluids Engineering, 127, pp. 995-1002. https://doi.org/10.1115/1.1988343
  11. Neeley, S.K., 1997. Non-cylindrical blade geometry definition. SNAME Propellers and Shafting Symposium.
  12. Park, I.R., Kim, K.S., Kim, J.I., Seol, H.S., Park, Y.H. and Ahn, J.W., 2020. Numerical study on propeller cavitation and pressure fluctuation of model and full scale ship for a MR tanker. Journal of the Society of Naval Architects of Korea, 57(1), pp. 35-44. https://doi.org/10.3744/SNAK.2020.57.1.035
  13. Schnerr, G.H. and Sauer, J., 2001. Physical and numerical modeling of unsteady cavitation dynamics. Fourth International Conference on Multiphase Flow, New Orleans, LA, USA.
  14. Shin, K.W. and Andersen, P., 2019. CFD analysis of ship propeller thrust breakdown. Sixth International Symposium on Marine Propulsors, Rome, Italy.
  15. Vaz, G., Hally, D., Huuva, T., Bulten, N., Muller, P., Becchi, P., Herrer, J.L.R., Whitworth, S., Mace, R. and Korsstrom, A., 2015. Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation. Fourth International Symposium on Marine Propulsors, Houston, Texas, USA.