Acknowledgement
본 논문은 한국연구재단 과제(2020R1A2C2010548) 연구의 일환으로 수행되었음.
References
- Kim T, Han SW. Effect of wind loads on collapse performance and seismic loss for steel ordinary moment frames. Appl. Sci. 2022 Feb; 12(4).
- Kim T, Han SW. Effect of analysis procedures on seismic collapse risk of steel special moment frames. EESK J. Earthquake Eng. Nov;24(6):243-251.
- Ban HY, Shi G, Shi YJ, Wang YB. Research progress on the mechanical property of high strength structural steels. Adv. Mat. Res. 2011 May;250~253:640-648. https://doi.org/10.4028/www.scientific.net/AMR.250-253.640
- YongJiu S, Meng W, Yuanqing W. Experimental and constitutive model study of structural steel under cyclic lading. J. Constr. Steel Res. 2011 Aug;67(8):1185-1197. https://doi.org/10.1016/j.jcsr.2011.02.011
- AISC 341, Seismic provisions for structural steel building, Chicago, IL: American Institute of Steel Construction; c2016.
- KS D 5994. High-performance steel for building structures. Korea: Korean Agency for Technology and Standards; c2018.
- ASTM E8/E8M. Standard test methods for tension testing of metallic materials. West Conshohocken. OA. USA; c2016.
- ASTM E606/E606M. Standard test method for strain-controlled fatigue testing. West Conshohocken. OA. USA; c2012.
- Shi G, Wang M, Bai Y, Wang F, Shi Y, Wang Y. Experimental and modeling study of high-strength structural steel under cyclic loading. Eng. Struct. 2012 Apr;37:1-13. https://doi.org/10.1016/j.engstruct.2011.12.018
- Segui WY. Steel design. Cengage learning; c2012.
- Kaufmann EJ, Metrovich B, Pense AW. Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections. ATLSS Report No. 01-13. Lehigh University; c2001.
- Hilditch TB, Timokhina IB, Robertson LT, Pereloma EV, Hodgson PD. Cyclic deformation of advenced high strength steels: mechanical behavior and microstructural analysis. Metall. Mater. Trans. 2009 Jan;40:342-353. https://doi.org/10.1007/s11661-008-9732-x
- Voce E. The relationship between stress and strain for homogenous deformation. J. Inst. Met. 1948;74:537-562
- Prager W. Recent developments in the mathematical theory of plasticity. J. Appl. Phys. 1949;20(3):235-241. https://doi.org/10.1063/1.1698348
- Armstrong PJ, Frederick CO. A mathematical representation of the multiaxial Bauschinger effect. Berkeley Nuclear Laboratories; c1996.
- Mroz Z. On the description of anisotropic workhardening. J. Mech. Phys. Solids. 1997 May;15(3):163-175. https://doi.org/10.1016/0022-5096(67)90030-0
- Chab oche JL, Van KD, Cordier G. Modeliazation of the strain memory effect on the cyclic hardening of 316 stainless steel. in SMIRT-5. Berlin. Germany; c1979.
- Chaboche JL. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 1986;2(2):149-188. https://doi.org/10.1016/0749-6419(86)90010-0
- Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery. Int. J. Plast. 1994;9(3):375-390. https://doi.org/10.1016/0749-6419(93)90042-O
- Bari S, Hassan T. Anatomy of coupled constitutive models for ratcheting simulation. Int. J. Plast. 2000;16(3):381-409. https://doi.org/10.1016/S0749-6419(99)00059-5
- Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. 1995;39-43.
- Hancock GJ, Mackenzie MR. On the mechanisms of ductile fracture in high strength-steels subject to multi axial stress state. Mech. Phys. Solids. 1978 Jun;24(2-3):147-160. https://doi.org/10.1016/0022-5096(76)90024-7