DOI QR코드

DOI QR Code

Determination of Combined Hardening Model Parameters to Simulate the Inelastic Behavior of High-Strength Steels

고강도 강재의 비탄성 거동을 모사하기 위한 복합경화모델 파라미터 결정

  • Cho, EunSeon (Department of Architectural Engineering, Hanyang University) ;
  • Cho, Jin Woo (Department of Architectural Engineering, Hanyang University) ;
  • Han, Sang Whan (Department of Architectural Engineering, Hanyang University)
  • 조은선 (한양대학교 건축공학과) ;
  • 조진우 (한양대학교 건축공학과) ;
  • 한상환 (한양대학교 건축공학과)
  • Received : 2023.09.04
  • Accepted : 2023.10.04
  • Published : 2023.11.01

Abstract

The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.

Keywords

Acknowledgement

본 논문은 한국연구재단 과제(2020R1A2C2010548) 연구의 일환으로 수행되었음.

References

  1. Kim T, Han SW. Effect of wind loads on collapse performance and seismic loss for steel ordinary moment frames. Appl. Sci. 2022 Feb; 12(4).
  2. Kim T, Han SW. Effect of analysis procedures on seismic collapse risk of steel special moment frames. EESK J. Earthquake Eng. Nov;24(6):243-251.
  3. Ban HY, Shi G, Shi YJ, Wang YB. Research progress on the mechanical property of high strength structural steels. Adv. Mat. Res. 2011 May;250~253:640-648. https://doi.org/10.4028/www.scientific.net/AMR.250-253.640
  4. YongJiu S, Meng W, Yuanqing W. Experimental and constitutive model study of structural steel under cyclic lading. J. Constr. Steel Res. 2011 Aug;67(8):1185-1197. https://doi.org/10.1016/j.jcsr.2011.02.011
  5. AISC 341, Seismic provisions for structural steel building, Chicago, IL: American Institute of Steel Construction; c2016.
  6. KS D 5994. High-performance steel for building structures. Korea: Korean Agency for Technology and Standards; c2018.
  7. ASTM E8/E8M. Standard test methods for tension testing of metallic materials. West Conshohocken. OA. USA; c2016.
  8. ASTM E606/E606M. Standard test method for strain-controlled fatigue testing. West Conshohocken. OA. USA; c2012.
  9. Shi G, Wang M, Bai Y, Wang F, Shi Y, Wang Y. Experimental and modeling study of high-strength structural steel under cyclic loading. Eng. Struct. 2012 Apr;37:1-13. https://doi.org/10.1016/j.engstruct.2011.12.018
  10. Segui WY. Steel design. Cengage learning; c2012.
  11. Kaufmann EJ, Metrovich B, Pense AW. Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections. ATLSS Report No. 01-13. Lehigh University; c2001.
  12. Hilditch TB, Timokhina IB, Robertson LT, Pereloma EV, Hodgson PD. Cyclic deformation of advenced high strength steels: mechanical behavior and microstructural analysis. Metall. Mater. Trans. 2009 Jan;40:342-353. https://doi.org/10.1007/s11661-008-9732-x
  13. Voce E. The relationship between stress and strain for homogenous deformation. J. Inst. Met. 1948;74:537-562
  14. Prager W. Recent developments in the mathematical theory of plasticity. J. Appl. Phys. 1949;20(3):235-241. https://doi.org/10.1063/1.1698348
  15. Armstrong PJ, Frederick CO. A mathematical representation of the multiaxial Bauschinger effect. Berkeley Nuclear Laboratories; c1996.
  16. Mroz Z. On the description of anisotropic workhardening. J. Mech. Phys. Solids. 1997 May;15(3):163-175. https://doi.org/10.1016/0022-5096(67)90030-0
  17. Chab oche JL, Van KD, Cordier G. Modeliazation of the strain memory effect on the cyclic hardening of 316 stainless steel. in SMIRT-5. Berlin. Germany; c1979.
  18. Chaboche JL. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 1986;2(2):149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  19. Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery. Int. J. Plast. 1994;9(3):375-390. https://doi.org/10.1016/0749-6419(93)90042-O
  20. Bari S, Hassan T. Anatomy of coupled constitutive models for ratcheting simulation. Int. J. Plast. 2000;16(3):381-409. https://doi.org/10.1016/S0749-6419(99)00059-5
  21. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. 1995;39-43.
  22. Hancock GJ, Mackenzie MR. On the mechanisms of ductile fracture in high strength-steels subject to multi axial stress state. Mech. Phys. Solids. 1978 Jun;24(2-3):147-160. https://doi.org/10.1016/0022-5096(76)90024-7