DOI QR코드

DOI QR Code

Identification of the Kombucha Microorganisms That Make Up the SCOBY

SCOBY를 구성하는 콤부차 미생물 동정

  • Sung Soo Park (Dept. of Food Science & Nutrition, Jeju National University)
  • 박성수 (제주대학교 식품영양학과)
  • Received : 2023.05.08
  • Accepted : 2023.09.02
  • Published : 2023.09.30

Abstract

Background: Kombucha, known domestically as black tea mushroom, is a traditional fermented beverage from Northeast Asia made by fermenting a mixture of black tea extract and fungus. It is known for its high detoxifying, antimicrobial, and antioxidant activities, as well as its effects on relieving arthritis pain, reducing blood pressure, and addressing gastrointestinal or metabolic diseases. Purpose: This study aims to identify the main microbial system of Kombucha fermentation. Methods: The 16sRNA sequencing method was applied to analyze the microbial composition of Kombucha fermentation. Results: Bacterial, yeast, and fungi groups were identified. Through the identification of commercial Kombucha strains, it was confirmed that the bacteria in the Kombucha fermentation liquid and the pellicle were predominantly microbes from the Gluconacetobacter and Gluconobactor, which are involved in the fermentation of Kombucha. Among the yeasts, Sacchromycetes class, Starmerella bacillaris were identified with the highest expression rate. It was confirmed that the main microbial system fermenting Kombucha is SCOBY(Symbiotic Culture of Bacteria and Yeast), and that different strains are prominently expressed compared to the foreign Kombucha, which is mainly composed of Acetobacter acetic bacteria and Zygosaccharomyces yeast commonly. Conclusions: This study highlights the complexity and diversity of the microbial ecosystem in Kombucha fermentation, and comparative analysis with commercial strains reveals the potential for diversification of SCOBY to improve the functional properties of Kombucha. Future studies will investigate microbial interactions within the SCOBY and their impact on the health-promoting properties of Kombucha.

배경: 콤부차는 국내에서는 홍차버섯으로 알려져 있으며, 홍차 추출액에 균총을 넣어 발효시킨 동북아시아의 전통 발효음료이다. 이는 해독 작용, 항균 활성, 항산화 활성이 높을 뿐만 아니라, 관절염의 통증 완화, 혈압 감소, 소화기 또는 대사성 질환에 대한 효과가 있다고 알려져 있다. 목적: 본 연구는 콤부차 발효의 주된 미생물 시스템을 식별하는 것을 목표로 한다. 방법: 콤부차 발효의 주요 미생물 체계 동정을 위해 16sRNA 방법을 사용하여 세균, 효모, 곰팡이 군들을 동정하였다. 결과: 시판되는 콤부차 균주 동정을 통해 콤부차의 발효액과 팰리클의 세균류는 Gluconacetobacter와 Gluconobactor 속 미생물이 주류를 이루며 콤부차의 발효에 관여한다는 사실을 확인하였다. 효모 중에서는 Sacchromycetes과(class) Starmerella bacillaris가 가장 높은 발현율로 동정되었다. 이를 통해 콤부차를 발효하는 주요 미생물 체계가 SCOBY(Simbiotic Culture of Bacteria and Yeast)인 것을 확인하였으며, 기존의 Acetobacter 속 초산균과 Zygosaccromyces 속 효모가 주를 이루던 외국의 콤부차와는 미생물 체계가 다른 계열이 우세하게 발현되었다는 것을 확인하였다. 결론: 본 연구에서는 Kombucha 발효과정에서 미생물 생태계의 복잡성과 다양성을 강조하며 시판 균주와의 비교 분석을 통해 SCOBY의 다양화가 Kombucha의 기능적 특성을 향상시킬 수 있는 가능성이 밝혀졌다. 향후 연구에서는 SCOBY 내의 미생물 상호 작용과 이것이 Kombucha의 건강 증진 특성에 미치는 영향이 조사될 것이다.

Keywords

Acknowledgement

본 연구 수행에 도움을 주신 Chunlab(CJ Bioscience)에 감사드립니다.

References

  1. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang. et al. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
  2. Antolak, H., D. Piechota, and A. Kucharska. 2021. Kombucha tea-A double power of bioactive compounds from tea and Symbiotic Culture of Bacteria and Yeasts(SCOBY). Antioxidants 10(10): 1541. doi: 10.3390/antiox10101541
  3. Buee, M., M. Reich, C. Murat, E. Morin, R.H. Nilsson. et al. 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184: 449-456.
  4. Chen, C., and B.Y. Liu. 2000. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89(5): 834-839.
  5. Claesson, M.J., Q. Wang, O. O'Sullivan, R. Greene-Diniz, J.R. Cole. et al. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38(22): e200.
  6. DeKeersmaecker, J. 1996. The mystery of lambic beer. Sci. Am. 275: 74-80.
  7. Dippenmeier, U., M. Hoffermeister, and C. Prust. 2002. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 3: 233-242.
  8. Dutta, D., and R. Gachhui. 2007. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp nov., isolated from kombucha tea. Int. J. Syst. Evolut. Microbiol. 57: 353-357.
  9. El-Salam, S.S.A. 2012. 16S rRNA gene sequence detection of acetic acid bacteria isolated from tea kombucha. New York Sci. J. 5: 55-61.
  10. Englezos, V., and K. Rantsiou. 2015. Torchio Fabrizio, Rolle Luca, Gerbi Vincenzo, Cocolin Luca. exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology 199: 33-40.
  11. Heresztyn, T. 1986. Metabolism of volatile phenolic-compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch. Microbiol. 146: 96-98.
  12. Hiroshi, H,, F. Tokuma, M. Tomotake, K. Dai, Y. Toshiharu. et al. 2010. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans. Boisci. Biotechnol. Biochem. 74(7): 1391-1395.
  13. Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180(18): 4765-4774.
  14. Jayabalan, R., R.V. Malbasa, E.S. Loncar, J.S. Vitas, and M. Sathishkumar. 2014. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13(4): 538-550.
  15. Kallel, L., V. Desseaux, M. Hamdi, P. Stocker, and E. Ajandouz. 2012. Insights into the fermentation biochemistry of kombucha teas and potential impacts of kombucha drinking on starch digestion. Food Res. Int. 49: 226-232.
  16. Keliang, G., and W. Dongzhi. 2006. Asymmetric oxidation by Gluconobacter oxydans. Appl. Microbiol. Biotechnol. 70: 135-139.
  17. Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim. et al. 2012. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 62: 716-721.
  18. Lee, J., J. Chol, J. Kim, H.J. Choi, D. Lee. et al. 2022. Evaluation of the fermentation characteristics and functionality of kombucha for commercialization. J Korean Soc Food Sci Nutr. 51(8): 811-818.
  19. Marsh, A.J., O. O'Sullivan, C. Hill, R.P. Ross, and P.D. Cotter. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38: 171-178.
  20. Mikkelsen, D., B.M. Flanagan, G.A. Dykes, and M.J. Gidley. 2009. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107: 576-583.
  21. Myers, E.W., and W. Miller. 1988. Optimal alignments in linear space. Comput Appl Biosci. 4: 11-17.
  22. Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276(5313): 734-740.
  23. Prust, C., M. Hoffermeister, H. Liesegang, A. Wiezer, W.F. Fricke, A. Ehrenreich, G. Gottschalk, and U. Dippenmeier. 2005. Complete genome sequence of the acetic bacterium Gluconobacter oxydans. Nat. Biotechnol. 23: 195-200.
  24. Schloss, P.D., and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71(3): 1501-1506.
  25. Sreeramulu, G., Y. Zhu, and W. Knol. 2000. Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48: 2589-2594.
  26. Steels, H., S.A. James, I.N. Roberts, and M. Stratford. 1999. Zygosaccharomyces lentus: A significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. J. Appl. Microbiol. 87: 520-527.
  27. Strap, J.L., A. Latos, I. Shim, and D.T. Bonetta. 2011. Characterization of pellicle inhibition in Gluconacetobacter xylinus 53582 by a small molecule, pellicin, identified by a chemical genetics screen. PloS One 6: e28015.
  28. Teoh, A.L., G. Heard, and J. Cox. 2004. Yeast ecology of kombucha fermentation. Int. J. Food Microbiol. 95: 119-126.
  29. Tindall, B.J., R. Rossello-Mora, H.J. Busse, W. Ludwig, and P. Kampfer. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 60: 249-266.
  30. Troitino, C. 2017.02.01. Kombucha 101: Demystifying the past, present and future of the fermented tea drink. Forbes, https://www.forbes.com/sites/christinatroitino/2017/02/01/kombucha-101-demystifying-the-past-present-and-future-of-the-fermented-tea-drink/?sh=7c782d984ae2. (Accessed on Dec. 30, 2023).
  31. Trovatti, E., L.S. Serafim, C.S.R. Freire, A.J.D. Silvestre, and C.P. Neto. 2011. Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory. Carbohydr. Polym. 86: 1417-1420.
  32. Villarreal-Soto, S.A., S. Beaufort, J. Bouajila, J.P. Souchard, and P. Taillandier. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83(3): 580-588.
  33. Vu, H.T.L., P. Yukphan, W. Chaipitakchonlatarn, T. Malimas, Y. Muramatsu. et al. 2013. Nguyenibacter vanlangensis gen. nov., sp nov., an unusual acetic acid bacterium in the alpha-proteobacteria. J. Gen. Appl. Microbiol. 59: 153-166.
  34. Woese, C.R., O. Kandler, and M.L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences 87(12): 4576-4579.
  35. Yamada, Y., K. Hoshino, and T. Ishikawa. 1997. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level. Biosci. Biotechnol. Biochem. 61: 1244-1251.
  36. Yang, Z., F. Zhou, B. Ji, B. Li, Y. Luo. et al. 2010. Symbiosis between microorganisms from kombucha and kefir: Potential significance to the enhancement of kombucha function. Appl. Biochem. Biotechnol. 160: 446-455.