Acknowledgement
본 연구 수행에 도움을 주신 Chunlab(CJ Bioscience)에 감사드립니다.
References
- Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang. et al. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
- Antolak, H., D. Piechota, and A. Kucharska. 2021. Kombucha tea-A double power of bioactive compounds from tea and Symbiotic Culture of Bacteria and Yeasts(SCOBY). Antioxidants 10(10): 1541. doi: 10.3390/antiox10101541
- Buee, M., M. Reich, C. Murat, E. Morin, R.H. Nilsson. et al. 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184: 449-456.
- Chen, C., and B.Y. Liu. 2000. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89(5): 834-839.
- Claesson, M.J., Q. Wang, O. O'Sullivan, R. Greene-Diniz, J.R. Cole. et al. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38(22): e200.
- DeKeersmaecker, J. 1996. The mystery of lambic beer. Sci. Am. 275: 74-80.
- Dippenmeier, U., M. Hoffermeister, and C. Prust. 2002. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 3: 233-242.
- Dutta, D., and R. Gachhui. 2007. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp nov., isolated from kombucha tea. Int. J. Syst. Evolut. Microbiol. 57: 353-357.
- El-Salam, S.S.A. 2012. 16S rRNA gene sequence detection of acetic acid bacteria isolated from tea kombucha. New York Sci. J. 5: 55-61.
- Englezos, V., and K. Rantsiou. 2015. Torchio Fabrizio, Rolle Luca, Gerbi Vincenzo, Cocolin Luca. exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology 199: 33-40.
- Heresztyn, T. 1986. Metabolism of volatile phenolic-compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch. Microbiol. 146: 96-98.
- Hiroshi, H,, F. Tokuma, M. Tomotake, K. Dai, Y. Toshiharu. et al. 2010. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans. Boisci. Biotechnol. Biochem. 74(7): 1391-1395.
- Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180(18): 4765-4774.
- Jayabalan, R., R.V. Malbasa, E.S. Loncar, J.S. Vitas, and M. Sathishkumar. 2014. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13(4): 538-550.
- Kallel, L., V. Desseaux, M. Hamdi, P. Stocker, and E. Ajandouz. 2012. Insights into the fermentation biochemistry of kombucha teas and potential impacts of kombucha drinking on starch digestion. Food Res. Int. 49: 226-232.
- Keliang, G., and W. Dongzhi. 2006. Asymmetric oxidation by Gluconobacter oxydans. Appl. Microbiol. Biotechnol. 70: 135-139.
- Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim. et al. 2012. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 62: 716-721.
- Lee, J., J. Chol, J. Kim, H.J. Choi, D. Lee. et al. 2022. Evaluation of the fermentation characteristics and functionality of kombucha for commercialization. J Korean Soc Food Sci Nutr. 51(8): 811-818.
- Marsh, A.J., O. O'Sullivan, C. Hill, R.P. Ross, and P.D. Cotter. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38: 171-178.
- Mikkelsen, D., B.M. Flanagan, G.A. Dykes, and M.J. Gidley. 2009. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107: 576-583.
- Myers, E.W., and W. Miller. 1988. Optimal alignments in linear space. Comput Appl Biosci. 4: 11-17.
- Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276(5313): 734-740.
- Prust, C., M. Hoffermeister, H. Liesegang, A. Wiezer, W.F. Fricke, A. Ehrenreich, G. Gottschalk, and U. Dippenmeier. 2005. Complete genome sequence of the acetic bacterium Gluconobacter oxydans. Nat. Biotechnol. 23: 195-200.
- Schloss, P.D., and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71(3): 1501-1506.
- Sreeramulu, G., Y. Zhu, and W. Knol. 2000. Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48: 2589-2594.
- Steels, H., S.A. James, I.N. Roberts, and M. Stratford. 1999. Zygosaccharomyces lentus: A significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. J. Appl. Microbiol. 87: 520-527.
- Strap, J.L., A. Latos, I. Shim, and D.T. Bonetta. 2011. Characterization of pellicle inhibition in Gluconacetobacter xylinus 53582 by a small molecule, pellicin, identified by a chemical genetics screen. PloS One 6: e28015.
- Teoh, A.L., G. Heard, and J. Cox. 2004. Yeast ecology of kombucha fermentation. Int. J. Food Microbiol. 95: 119-126.
- Tindall, B.J., R. Rossello-Mora, H.J. Busse, W. Ludwig, and P. Kampfer. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 60: 249-266.
- Troitino, C. 2017.02.01. Kombucha 101: Demystifying the past, present and future of the fermented tea drink. Forbes, https://www.forbes.com/sites/christinatroitino/2017/02/01/kombucha-101-demystifying-the-past-present-and-future-of-the-fermented-tea-drink/?sh=7c782d984ae2. (Accessed on Dec. 30, 2023).
- Trovatti, E., L.S. Serafim, C.S.R. Freire, A.J.D. Silvestre, and C.P. Neto. 2011. Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory. Carbohydr. Polym. 86: 1417-1420.
- Villarreal-Soto, S.A., S. Beaufort, J. Bouajila, J.P. Souchard, and P. Taillandier. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83(3): 580-588.
- Vu, H.T.L., P. Yukphan, W. Chaipitakchonlatarn, T. Malimas, Y. Muramatsu. et al. 2013. Nguyenibacter vanlangensis gen. nov., sp nov., an unusual acetic acid bacterium in the alpha-proteobacteria. J. Gen. Appl. Microbiol. 59: 153-166.
- Woese, C.R., O. Kandler, and M.L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences 87(12): 4576-4579.
- Yamada, Y., K. Hoshino, and T. Ishikawa. 1997. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level. Biosci. Biotechnol. Biochem. 61: 1244-1251.
- Yang, Z., F. Zhou, B. Ji, B. Li, Y. Luo. et al. 2010. Symbiosis between microorganisms from kombucha and kefir: Potential significance to the enhancement of kombucha function. Appl. Biochem. Biotechnol. 160: 446-455.