DOI QR코드

DOI QR Code

Clinical and Laboratory Features to Consider Genetic Evaluation among Children and Adolescents with Short Stature

  • Received : 2023.08.25
  • Accepted : 2023.10.17
  • Published : 2023.10.31

Abstract

Conventional evaluation method for identifying the organic cause of short stature has a low detection rate. If an infant who is small for gestational age manifests postnatal growth deterioration, triangular face, relative macrocephaly, and protruding forehead, a genetic testing of IGF2, H19, GRB10, MEST, CDKN1, CUL7, OBSL1, and CCDC9 should be considered to determine the presence of Silver-Russell syndrome and 3-M syndrome. If a short patient with prenatal growth failure also exhibits postnatal growth failure, microcephaly, low IGF-1 levels, sensorineural deafness, or impaired intellectual development, genetic testing of IGF1 and IGFALS should be conducted. Furthermore, genetic testing of GH1, GHRHR, HESX1, SOX3, PROP1, POU1F1, and LHX3 should be considered if patients with isolated growth hormone deficiency have short stature below -3 standard deviation score, barely detectable serum growth hormone concentration, and other deficiencies of anterior pituitary hormone. In short patients with height SDS <-3 and high growth hormone levels, genetic testing should be considered to identify GHR mutations. Lastly, when severe short patients (height z score <-3) exhibit high levels of prolactin and recurrent pulmonary infection, genetic testing should be conducted to identify STAT5B mutations.

Keywords

References

  1. Sisley S, Trujillo MV, Khoury J, Backeljauw P. Low incidence of pathology detection and high cost of screening in the evaluation of asymptomatic short children. J Pediatr 2013;163:1045-51. doi: 10.1016/j.jpeds.2013.04.002.
  2. Kang MJ. Novel genetic cause of idiopathic short stature. Ann Pediatr Endocrinol Metab 2017;22:153-7. doi: 10.6065/apem.2017.22.3.153.
  3. Dauber A, Rosenfeld RG, Hirschhorn JN. Genetic evaluation of short stature. J Clin Endocrinol Metab 2014;99:3080-92. doi: 10.1210/jc.2014-1506.
  4. Hokken-Koelega AC, De Ridder MA, Lemmen RJ, Den Hartog H, De Muinck Keizer-Schrama SM, Drop SL. Children born small for gestational age: do they catch up? Pediatr Res 1995;38:267-71. doi: 10.1203/00006450-199508000-00022.
  5. Azzi S, Salem J, Thibaud N, Chantot-Bastaraud S, Lieber E, Netchine I, et al. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015;52:446-53. doi: 10.1136/jmedgenet-2014-102979.
  6. Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 2007;92:3148-54. doi: 10.1210/jc.2007-0354.
  7. Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017;13:105-24. doi: 10.1038/nrendo.2016.138.
  8. Azzi S, Blaise A, Steunou V, Harbison MD, Salem J, Brioude F, et al. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation. Hum Mutat 2014;35:1211-20. doi: 10.1002/humu.22623.
  9. Begemann M, Spengler S, Kanber D, Haake A, Baudis M, Leisten I, et al. Silver-Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues. Clin Genet 2011;80:83-8. doi: 10.1111/j.1399-0004.2010.01514.x.
  10. Eggermann T, Spengler S, Begemann M, Binder G, Buiting K, Albrecht B, et al. Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver-Russell syndrome features. Clin Genet 2012;81:298-300. doi: 10.1111/j.1399-0004.2011.01719.x.
  11. Monk D, Wakeling EL, Proud V, Hitchins M, Abu-Amero SN, Stanier P, et al. Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am J Hum Genet 2000;66:36-46. doi: 10.1086/302717.
  12. Brioude F, Oliver-Petit I, Blaise A, Praz F, Rossignol S, Le Jule M, et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013; 50:823-30. doi: 10.1136/jmedgenet-2013-101691.
  13. Begemann M, Zirn B, Santen G, Wirthgen E, Soellner L, Buttel HM, et al. Paternally Inherited IGF2 Mutation and Growth Re-striction. N Engl J Med 2015;373:349-56. doi: 10.1056/NEJMoa1415227.
  14. Clayton PE, Hanson D, Magee L, Murray PG, Saunders E, AbuAmero SN, et al. Exploring the spectrum of 3-M syndrome, a primordial short stature disorder of disrupted ubiquitination. Clin Endocrinol (Oxf) 2012;77:335-42. doi: 10.1111/j.1365-2265.2012.04428.x.
  15. Maksimova N, Hara K, Miyashia A, Nikolaeva I, Shiga A, Nogovicina A, et al. Clinical, molecular and histopathological features of short stature syndrome with novel CUL7 mutation in Yakuts: new population isolate in Asia. J Med Genet 2007;44:772-8. doi: 10.1136/jmg.2007.051979.
  16. Klingseisen A, Jackson AP. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev 2011;25:2011-24. doi: 10.1101/gad.169037.
  17. Mullis PE. Genetic control of growth. Eur J Endocrinol 2005;152: 11-31. doi: 10.1530/eje.1.01797.
  18. Alatzoglou KS, Turton JP, Kelberman D, Clayton PE, Mehta A, Buchanan C, et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J Clin Endocrinol Metab 2009;94:3191-9. doi: 10.1210/jc.2008-2783.
  19. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996; 384:327-33. doi: 10.1038/384327a0.
  20. Bottner A, Keller E, Kratzsch J, Stobbe H, Weigel JF, Keller A, et al. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: a longitudinal analysis. J Clin Endocrinol Metab 2004;89:5256-65. doi: 10.1210/jc.2004-0661.
  21. Voutetakis A, Argyropoulou M, Sertedaki A, Livadas S, Xekouki P, Maniati-Christidi M, et al. Pituitary magnetic resonance imaging in 15 patients with Prop1 gene mutations: pituitary enlargement may originate from the intermediate lobe. J Clin Endocrinol Metab 2004;89:2200-6. doi: 10.1210/jc.2003-031765.
  22. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 1990;4:695-711. doi: 10.1101/gad.4.5.695.
  23. Pfaffle R, Klammt J. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Pract Res Clin Endocrinol Metab 2011;25:43-60. doi: 10.1016/j.beem.2010.10.014.
  24. Turton JP, Reynaud R, Mehta A, Torpiano J, Saveanu A, Woods KS, et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J Clin Endocrinol Metab 2005;90:4762-70. doi: 10.1210/jc.2005-0570.
  25. Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 2003;349:2211-22. doi: 10.1056/NEJMoa010107.
  26. Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentation of growth hormone--a new inborn error of metabolism? Isr J Med Sci 1966;2:152-5.
  27. David A, Hwa V, Metherell LA, Netchine I, Camacho-Hubner C, Clark AJ, et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev 2011;32:472-97. doi: 10.1210/er.2010-0023.
  28. Baumann G. Genetic characterization of growth hormone deficiency and resistance: implications for treatment with recombinant growth hormone. Am J Pharmacogenomics 2002;2:93-111. doi: 10.2165/00129785-200202020-00003.
  29. Savage MO, Attie KM, David A, Metherell LA, Clark AJ, Camacho-Hubner C. Endocrine assessment, molecular characterization and treatment of growth hormone insensitivity disorders. Nat Clin Pract Endocrinol Metab 2006;2:395-407. doi: 10.1038/ncpendmet0195.
  30. Diniz ET, Jorge AA, Arnhold IJ, Rosenbloom AL, Bandeira F. [Novel nonsense mutation (p.Y113X) in the human growth hormone receptor gene in a Brazilian patient with Laron syndrome]. Arq Bras Endocrinol Metabol 2008;52:1264-71. doi: 10.1590/s0004-27302008000800010.
  31. Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 2001;229:141-62. doi: 10.1006/dbio.2000.9975.
  32. Ayling RM, Ross R, Towner P, Von Laue S, Finidori J, Moutoussamy S, et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat Genet 1997;16:13-4. doi: 10.1038/ng0597-13.
  33. Laron Z. Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958-2003. J Clin Endocrinol Metab 2004;89:1031-44. doi: 10.1210/jc.2003-031033.
  34. Iida K, Takahashi Y, Kaji H, Nose O, Okimura Y, Abe H, et al. Growth hormone (GH) insensitivity syndrome with high serum GH-binding protein levels caused by a heterozygous splice site mutation of the GH receptor gene producing a lack of intracellular domain. J Clin Endocrinol Metab 1998;83:531-7. doi: 10.1210/jcem.83.2.4601.
  35. Rosenfeld RG, Belgorosky A, Camacho-Hubner C, Savage MO, Wit JM, Hwa V. Defects in growth hormone receptor signaling. Trends Endocrinol Metab 2007;18:134-41. doi: 10.1016/j.tem.2007.03.004.
  36. Vidarsdottir S, Walenkamp MJ, Pereira AM, Karperien M, van Doorn J, van Duyvenvoorde HA, et al. Clinical and biochemical characteristics of a male patient with a novel homozygous STAT5b mutation. J Clin Endocrinol Metab 2006;91:3482-5. doi: 10.1210/jc.2006-0368.
  37. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, et al. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 2003;349:1139-47. doi: 10.1056/NEJMoa022926.
  38. Pugliese-Pires PN, Tonelli CA, Dora JM, Silva PC, Czepielewski M, Simoni G, et al. A novel STAT5B mutation causing GH insensitivity syndrome associated with hyperprolactinemia and immune dysfunction in two male siblings. Eur J Endocrinol 2010; 163:349-55. doi: 10.1530/eje-10-0272.
  39. Bernasconi A, Marino R, Ribas A, Rossi J, Ciaccio M, Oleastro M, et al. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. Pediatrics 2006;118:e1584-92. doi: 10.1542/peds.2005-2882.
  40. Netchine I, Azzi S, Houang M, Seurin D, Perin L, Ricort JM, et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J Clin Endocrinol Metab 2009;94:3913-21. doi: 10.1210/jc.2009-0452.
  41. Walenkamp MJ, Karperien M, Pereira AM, Hilhorst-Hofstee Y, van Doorn J, Chen JW, et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab 2005;90:2855-64. doi: 10.1210/jc.2004-1254.
  42. Camacho-Hubner C, Woods KA, Miraki-Moud F, Clark A, Savage MO. Insulin-like growth factor-I deficiency caused by a partial deletion of the IGF-I gene: effects of rhIGF-I therapy. Growth Horm IGF Res 1999;9 Suppl B:47-51; discussion -2. doi: 10.1016/s1096-6374(99)80081-1.
  43. van Duyvenvoorde HA, van Setten PA, Walenkamp MJ, van Doorn J, Koenig J, Gauguin L, et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J Clin Endocrinol Metab 2010;95:E363-7. doi: 10.1210/jc.2010-0511.
  44. Ooi GT, Cohen FJ, Tseng LY, Rechler MM, Boisclair YR. Growth hormone stimulates transcription of the gene encoding the acidlabile subunit (ALS) of the circulating insulin-like growth factorbinding protein complex and ALS promoter activity in rat liver. Mol Endocrinol 1997;11:997-1007. doi: 10.1210/mend.11.7.9942.
  45. Domene HM, Scaglia PA, Lteif A, Mahmud FH, Kirmani S, Frystyk J, et al. Phenotypic effects of null and haploinsufficiency of acidlabile subunit in a family with two novel IGFALS gene mutations. J Clin Endocrinol Metab 2007;92:4444-50. doi: 10.1210/jc.2007-1152.
  46. Domene HM, Hwa V, Argente J, Wit JM, Camacho-Hubner C, Jasper HG, et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm Res 2009;72:129-41. doi: 10.1159/000232486.
  47. Fofanova-Gambetti OV, Hwa V, Wit JM, Domene HM, Argente J, Bang P, et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab 2010;95:4184-91. doi: 10.1210/jc.2010-0489.
  48. Ester WA, van Duyvenvoorde HA, de Wit CC, Broekman AJ, Ruivenkamp CA, Govaerts LC, et al. Two short children born small for gestational age with insulin-like growth factor 1 receptor haploinsufficiency illustrate the heterogeneity of its phenotype. J Clin Endocrinol Metab 2009;94:4717-27. doi: 10.1210/jc.2008-1502.
  49. Walenkamp MJ, van der Kamp HJ, Pereira AM, Kant SG, van Duyvenvoorde HA, Kruithof MF, et al. A variable degree of intrauterine and postnatal growth retardation in a family with a missense mutation in the insulin-like growth factor I receptor. J Clin Endocrinol Metab 2006;91:3062-70. doi: 10.1210/jc.2005-1597.
  50. Kawashima Y, Kanzaki S, Yang F, Kinoshita T, Hanaki K, Nagaishi J, et al. Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J Clin Endocrinol Metab 2005;90:4679-87. doi: 10.1210/jc.2004-1947.
  51. Inagaki K, Tiulpakov A, Rubtsov P, Sverdlova P, Peterkova V, Yakar S, et al. A familial insulin-like growth factor-I receptor mutant leads to short stature: clinical and biochemical characterization. J Clin Endocrinol Metab 2007;92:1542-8. doi: 10.1210/jc.2006-2354.