Acknowledgement
This work was supported by the National Science Fund for Distinguished Young Scholars (Grant number: 61525107).
References
- Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. http://doi.org/10.12989/scs.2017.25.6.693.
- Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496
- Al-Furjan, M. S. H., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150
- Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2022), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Struct., 38(2), 1679-1696. https://doi.org/10.1007/s00366-020-01130-8
- Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W. and Tounsi, A. (2022), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Struct., 38(5), 3725-3741. https://doi.org/10.1007/s00366-020-01200-x
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
- Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
- Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nano platelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036
- Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019a), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos Part B: Eng. 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092
- Arefi, M., Bidgoli, E.M.R. and Rabczuk, T. (2019b), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based onMCST", Eur. J. Mech. A Solids, 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802
- Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Struct., 38, 1-22. https://doi.org/10.1007/s00366-021-01382-y
- Babaei, M., and Asemi, K. (2020a), "Stress analysis of functionally graded saturated porous rotating thick truncated cone", Mech. Base Des. Struct.,1-28. https://doi.org/10.1080/15397734.2020.1753536
- Babaei, M. and Asemi, K. (2020b), "Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation", SN Appl. Sci., 2(10), 1-21. https://doi.org/10.1007/s42452-020-03421-7
- Babaei, M., Kiarasi, F., Hossaeini Marashi, S.M., Ebadati, M., Masoumi, F., and Asemi, K. (2021), "Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical-cylindrical-conical shell", Waves Random Complex Med., 1-33. https://doi.org/10.1080/17455030.2021.2003478
- Bagheri, H., Kiani, Y., Bagheri, N. and Eslami, M.R. (2020), "Free vibration of joined cylindrical-hemispherical FGM shells", Arch.Appl. Mech., 90, 2185-2199. https://doi.org/10.1007/s00419-020-01715-1
- Bagheri, H., Kiani, Y. and Eslami, M.R. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mechanica, 229(7), 2751-2764. https://doi.org/10.1007/s00707-018-2133-3
- Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concr., 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213
- Bidzard, A., Malekzadeh, P. and Mohebpour, S (2021), "Influences of pressure and thermal environment on nonlinear vibration characteristics of multilayer FG-GPLRC toroidal panels on nonlinear elastic foundation", Compos Struct., 259, 113503. https://doi.org/10.1016/j.compstruct.2020.113503
- Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain., M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.239
- Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concr., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485
- Chaubey, A.K., A., Kumar and A., Chakrabarti (2018), "Novel shear deformation model for moderately thick and deep laminated composite conoidal shell", Mech. Base Des. Struct., 46(5), 50668. https://doi.org/10.1080/15397734.2017.1422433
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020a), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020b), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441
- Dastjerdi, S. and Beni, Y.T. (2019), "Anovel approach for nonlinear bending response of macro and nanoplates with irregular variable thickness under nonuniform loading in thermal environment", Mech. Base Des. Struct., 47(4), 453-478. https://doi.org/10.1080/15397734.2018.1557529
- Djilali, N., A.A., Bousahla, A., Kaci, M.M., Selim, F., Bourada, A., Tounsi, A., Tounsi, K.H. Benrahou and S.R., Mahmoud. (2022), "Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT", Steel Compos. Struct., 42(6), 779-789. https://doi.org/10.12989/scs.2022.42.6.779
- Dong, Y.H., B., Zhu, Y., Wang, Y.H., Li, and J., Yang (2018), "Nonlinear free vibration of graded grapheme reinforced cylindrical shells: Effects of spinning motion and axial load", J Sound Vib. 437, 79-96. https://doi.org/10.1016/j.jsv.2018.08.036
- Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
- Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech, 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721.
- Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
- Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates", Eng Comput., 36(3), 879-895. https://doi.org/10.1016/j.jsv.2018.08.036
- Ebrahimi, F. and Seyfi, A. (2020), "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Eng Comput., 36, 1-17. https://doi.org/10.1007/s00366-020-01069-w
- Faghidian, A. and Tounsi, A. (2022), "Dynamic characteristics of mixture unified gradient elastic nanobeams", Facta Univ. Series Mech. Eng., 20(3), 539-552. https://doi.org/10.22190/FUME220703035F
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)", Compos. Part B Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024
- Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, T. (2022a), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001
- Garg, A., Aggarwal, P., Aggarwal, Y., Belarbi, M.O., Chalak, H. D., Tounsi, A. and Gulia, R. (2022b), "Machine learning models for predicting the compressive strength of concrete containing nano silica", Comput. Concr., 30(1), 33-42. https://doi.org/10.12989/cac.2022.30.1.033
- Ghahfarokhi, D.S., Safarpour, M. and Rahimi, A.R. (2019), "Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs)", Mech. Base Des. Struct., 81-102. https://doi.org/10.1080/15397734.2019.1666723
- Guo, H., Zhuang, X. and Rabczuk, T. (2021), "A deep collocation method for the bending analysisof Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
- Gupta, A. and M., Talha (2018), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Base Des Struc., 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656
- Hachemi, M. and Hamza-Cherif, S.M. (2020), "Free vibration of composite laminated plate with complicated cutout", Mech. Base Des. Struct., 48(2), 192-216. https://doi.org/10.1080/15397734.2019.1633341
- He, Q., Dai, H.L., Gui, Q.F. and Li, J.J. (2020), "Analysis of vibration characteristics of joined cylindrical-spherical shells", Eng Struct., 218, 110767. https://doi.org/10.1016/j.engstruct.2020.110767
- Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG Graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255.
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7
- Irie, T., Yamada, G. and Muramoto, Y. (1984), "Free vibration of joined conical-cylindrical shells", J Sound Vib., 95(1), 31-39. https://doi.org/10.1007/s00707-018-2133-3
- Izadi, M.H., Hosseini-Hashemi, S. and Korayem, M.H. (2018), "Analytical and FEM solutions for free vibration of joined cross-ply laminated thick conical shells using shear deformation theory", Arch Appl Mech., 88(12), 2231-2246. https://doi.org/10.1007/s00419-018-1446-y
- Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Jamalabadi, M.Y.A., Borji, P., Habibi, M. and Pelalak, R. (2021), "Nonlinear vibration analysis of functionally graded GPL-RC conical panels resting on elastic medium", Thin Wall. Struct., 160, 107370. https://doi.org/10.1016/j.tws.2020.107370
- Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589
- Javani, M., Kiani, Y. and Eslami, M.R. (2021), "Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation", Compos. Struct. 261, 113515. https://doi.org/10.1016/j.compstruct.2020.113515
- Jrad, H., Mars, J., Wali, M. and Dammak, F. (2019), "Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells", Eng Comput., 35(3), 833-847. https://doi.org/10.1007/s00366-018-0633-3
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "Astudy on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3Dmodel: Bending and free vibration analysis", Comput. Concr. Int.J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/sem.2019.69.5.487.
- Katiyar, V., Gupta, A., and Tounsi, A. (2022), "Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM", Steel Compos. Struct., 45(5), 621-640. https://doi.org/10.12989/scs.2022.45.5.621
- Kiani, Y. (2018a), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comp. Meth. Appl. Mech. Eng., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015
- Kiani, Y. (2018b), "NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphenereinforced composite laminated plates", Thin Wall. Struct., 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024
- Kiani, Y. (2019), "Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment", Compos. Part B Eng., 156, 128-137. https://doi.org/10.1016/j.compositesb.2018.08.052
- Kiani, Y. (2020), "Influence of graphene platelets on the response of composite plates subjected to a moving load", Mech. Base Des. Struct., 1-14.
- Kiani, Y. and Zur, K.K. (2022), "Free vibrations of graphene platelet reinforced composite skew plates resting on point supports", Thin Wall. Struct., 176, 109363. https://doi.org/10.1016/j.tws.2022.109363
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001
- Lee, Y.S., Yang, M.S., Kim, H.S. and Kim, J.H. (2002), "A study on the free vibration of the joined cylindrical-spherical shell structures", Comput. Struct., 80(27-30), 2405-2414. https://doi.org/10.1016/S0045-7949(02)00243-2
- Lee, J. (2018), "Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev collocation method", J. Mech. Sci. Tech., 32(10), 4601-4612. https://doi.org/10.1007/s12206-018-0907-0
- Leissa, A.W. (1993), Vibration of Shells, American Institute of Physics, New York, U.S.A.
- Liu, J., Yan, H., and Jiang, K. (2013), "Mechanical properties of graphene platelet-reinforced alumina ceramic composites", Ceram. Int., 39(6), 6215-6221. https://doi.org/10.1016/j.ceramint.2013.01.041
- Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649
- Mangalasseri, A.S., Mahesh, V., Mukunda, S., Mahesh, V., Ponnusami, S.A., Harursampath, D. and Tounsi, A. (2023), "Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes", Adv. Nano Res., 14(1), 27-43. https://doi.org/10.12989/anr.2023.14.1.027
- Moradi, S. and Mansouri, M.H. (2012), "Thermal buckling analysis of shear deformable laminated orthotopic plates by differential quadrature", Steel Compos. Struct., 12(2), 129-147. https://doi.org/10.12989/scs.2012.12.2.129
- Nguyen, L.B., Thai, C.H., and Nguyen-Xuan, H. (2016), "A generalized unconstrained theory and isogeometric finite element analysis based on Bezier extraction for laminated composite plates", Eng Comput., 32(3), 457-475. https://doi.org/10.1007/s00366-015-0426-x
- Nguyen, P.C., Pham, Q.H., Tran, T.T. and Nguyen-Thoi, T. (2022), "Effects of partially supported elastic foundation on free vibration of FGP plates using ES-MITC3 elements", Ain Shams Eng. J., 13(3), 101615. https://doi.org/10.1016/j.asej.2021.10.010
- Patel, B.P., Ganapathi, M. and Kamat, S. (2000), "Free vibration characteristics of laminated composite joined conical-cylindrical shells", J Sound Vib., 237(5), 920-930. https://doi.org/10.1006/jsvi.2000.3018
- Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2021), "Finite element analysis for functionally graded porous nano-plates resting on elastic foundation", Steel Compos. Struct., 41(2), 149-166. https://doi.org/10.12989/scs.2021.41.2.149
- Pham, Q.H. and Nguyen, P.C. (2022), "Effects of size-dependence on static and free vibration of FGP nanobeams using finite element method based on nonlocal strain gradient theory", Steel Compos. Struct., 45(3), 331-348. https://doi.org/10.12989/scs.2022.45.3.331
- Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2022a), "Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium", Defence Technol., 18(8), 1311-1329. https://doi.org/10.1016/j.dt.2021.09.006
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen, P.C. and Malekzadeh, P. (2022b), "Dynamic instability of magnetically embedded functionally graded porous nanobeams using the strain gradient theory", Alexandria Eng. J., 61(12), 10025-10044. https://doi.org/10.1016/j.aej.2022.03.007
- Phung-Van, P., Thai, C.H., Ferreira, A.J.M. and Rabczuk, T. (2020), "Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads", Thin-Walled Struct., 148, 106497. https://doi.org/10.1016/j.tws.2019.106497
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, New York, U.S.A.
- Qu, Y., Chen, Y., Long, X., Hua, H. and Meng, G. (2013), "A variational method for free vibration analysis of joined cylindrical-conical shells", J. Vib. Control, 19(16), 2319-2334. https://doi.org/10.1177%2F1077546312456227 https://doi.org/10.1177%2F1077546312456227
- Rafiee, M.A., J.Z., Wang, H., Song, Z.Z., Yu, and N., Koratkar (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3, 3884-3990. https://doi.org/10.1021/nn9010472
- Reddy, K.R., El-Zein, A., Airey, D.W., Alonso-Marroquin, F., Schubel, P. and Manalo, A. (2020), "Self-healing polymers: Synthesis methods and applications", Nano Struct. Nano Objects, 23, 100500. https://doi.org/10.1016/j.nanoso.2020.100500
- Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider H. and Tounsi, A. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695
- Safarpour M., Rahimi, A.R. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Base Des. Struct., 48, 496-524. https://doi.org/10.1080/15397734.2019.1646137
- Sarkheil, S., Foumani, M.S. and Navazi, H.M. (2017), "Free vibrations of a rotating shell made of p joined cones", Int. J. Mech.Sci., 124, 83-94. https://doi.org/10.1016/j.ijmecsci.2017.02.003
- Shakouri, M. and M.A., Kouchakzadeh (2014), "Free vibration analysis of joined conical shells: Analytical and experimental study", Thin Wall. Struct., 85, 350-358. https://doi.org/10.1016/j.tws.2014.08.022
- Shojaei, A., Galvanetto, U., Rabczuk, T., Jenabi, A. and Zaccariotto, M. (2019), "A generalized finite difference method based on the Peridynamic differential operator for the solution of problemsin bounded and unbounded domains", Comp Meth Appl Mech Eng. 343,100-126. https://doi.org/10.1016/j.cma.2018.08.033
- Soedel, W. (2004), Vibrations of Shells and Plates, Marcel Dekker, New York., U.S.A. https://doi.org/10.3233/SAV-1995-2209
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
- Soureshjani A.H., Talebitooti R. and Talebitooti, M. (2020), "Thermal effects on the free vibration of joined FG-CNTRC conical-conical shells", Thin Wall. Struct., 156, 106960. https://doi.org/10.1016/j.tws.2020.106960
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663.
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
- Tran, T.V., Tran, T.D., Hoa Pham, Q., Nguyen-Thoi, T. and Tran, V.K. (2020), "An ES-MITC3 finite element method based on higher-order shear deformation theory for static and free vibration analyses of FG porous plates reinforced by GPLs", Math. Probl. Eng., 1-18. https://doi.org/10.1155/2020/7520209
- Van Vinh, P. and Tounsi, A. (2022a), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Struct., 38(5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8
- Van Vinh, P. and Tounsi, A. (2022b), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084
- Van Vinh, P., Van Chinh, N. and Tounsi, A. (2022), "Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM", Eur. J. Mech. A Solids, 96, 104743. https://doi.org/10.1016/j.euromechsol.2022.104743
- Wang, Y., Feng, C., Wang, X., Zhao, Z., Romero, C. S. and Yang, J. (2019), "Nonlinear free vibration of graphene platelets (GPLs)/polymer dielectric beam", Smart Mater. Struct., 28(5), 055013. https://doi.org/10.1088/1361-665X/ab0b51
- Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.tws.2017.05.006
- Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos.Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zeighampour, H. and Beni, Y.T., (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004
- Zeighampour, H., Beni Y.T. and Dehkordi, M.B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin Wall. Struct., 122, 378-386. http://doi.org/10.1016/j.tws.2017.10.037
- Zenkour, A.M. (2014a), "Torsional analysis of heterogeneous magnetic circular cylinder", Steel Compos. Struct., 17(4), 535-548. http://doi.org/10.12989/scs.2014.17.4.535
- Zenkour, A.M. (2014b), "Exact solution of thermal stress problem of an inhomogeneous hygrothermal piezoelectric hollow cylinder", Appl. Math. Modell., 38(24), 6133-6143. https://doi.org/10.1016/j.apm.2014.05.028
- Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117
- Zhao, X., Q., Zhang, D., Chen and P., Lu (2010), "Enhanced mechanical properties of graphene based poly (vinyl alcohol) composites", Macromolecules, 43, 2357-2363. https://doi.org/10.1021/ma902862u
- Zhao, L.C., Chen, S.S., Xu, Y.P., Tahouneh, V. (2021), "Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length", Steel Compos. Struct., 38, 477-496. https://doi.org/10.12989/scs.2021.38.5.477
- Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Elsevier.